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Abstract

In this paper we propose a new type of random CSP model, called Model RB, which is
a revision to the standard Model B. It is proved that phase transitions from a region where
almost all problems are satisfiable to a region where almost all problems are unsatisfiable
do exist for Model RB as the number of variables approaches infinity. Moreover, the critical
values at which the phase transitions occur are also known exactly. By relating the hardness
of Model RB to Model B, it is shown that there exist a lot of hard instances in Model RB.

1. Introduction

Since the seminal paper of Cheeseman, Kanefsky and Taylor (1991) appeared, there has
been a great amount of interest in the study of phase transitions in NP-complete problems.
However, it seems to be very difficult to prove the existence of this phenomenon or to obtain
the exact location of the transition points for such problems. For example, in random 3-
SAT, it is known from experiments that the phase transition will occur when the ratio of
clauses to variables is approximately 4.3 (Mitchell, Selman, & Levesque, 1992). Another
experimental estimate of the transition point suggested by Kirkpatrick and Selman (1994)
is 4.17. They used finite-size scaling methods from statistical physics to derive the result. In
contrast with the experimental studies, the theoretical work has only given some loose but
hard won bounds on the location of the transition point. Currently, the best known lower
bound and upper bound are 3.003 (Frieze & Suen, 1996) and 4.602 (Kirousis et al., 1998)
respectively. Recently, Friedgut (1999) made tremendous progress towards establishing the
existence of a threshold for random k-SAT by proving that the width of the transition region
narrows as the number of variables increases. But we still can not obtain the exact location
of the phase transition point from this approach.

In fact, SAT is a special case of the constraint satisfaction problem (CSP). CSP has not
only important theoretical value in artificial intelligence, but also many immediate appli-
cations in areas ranging from vision, language comprehension to scheduling and diagnosis
(Dechter, 1998). In general, CSP tasks are computationally intractable (NP-hard) (Dechter,
1998). In recent years random constraint satisfaction problems have also received great at-
tention, both from an experimental and a theoretical point of view (Achlioptas et al., 1999;
Cheeseman et al., 1991; Frost & Dechter, 1994; Gent et al., 1999; Hogg, 1996; Larrosa &
Meseguer, 1996; Prosser, 1996; Purdom, 1997; Smith & Dyer, 1996; Smith, 1999; Williams
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& Hogg, 1994). Williams and Hogg (1994) developed a technique to predict where the
hardest problems are to be found and where the fluctuations in difficulty are greatest in a
space of problem instances. They have also shown that their predictions of the critical value
agree well with the experimental data. Smith and Dyer (1996) studied the location of the
phase transition in binary constraint satisfaction problems and discussed the accuracy of a
prediction based on the expected number of solutions. Their results show that the variance
of the number of solutions can be used to set bounds on the phase transition and to indicate
the accuracy of the prediction. Recently, a theoretical result by Achlioptas et al. (1999)
shows that many models commonly used for generating random CSP instances do not have
an asymptotic threshold due to the presence of flawed variables. More recently, Gent et al.
(1999) have shown how to introduce structure into the conflict matrix to eliminate flaws.

In this paper we propose a new type of random CSP model, called Model RB, which
is a revision to the standard Model B (Gent et al., 1999; Smith & Dyer, 1996). It is
proved that the phase transition phenomenon does exist for Model RB as the number of
variables approaches infinity. More precisely, there exist two control parameters r, p and
the corresponding critical values r¢,, p.r such that for each fixed value r < r. or p < per, a
random CSP instance generated following Model RB is satisfiable with probability tending
to 1 as the number of variables approaches infinity, and when r > r,. or p > p,,., unsatisfiable
with probability tending to 1. Moreover, the critical values 7., and p.. are also known
exactly. By relating the hardness of Model RB to Model B, it is shown that Model RB
actually has a lot of hard instances.

2. Definitions and Notations

A constraint satisfaction problem (CSP) consists of a finite set U = {uy,---,up} of n
variables and a set of constraints. For each variable u;, a domain D; with d; elements
is specified; a variable can only be assigned a value from its domain. For 2 < k < n a
constraint Cjj jo....;, consists of a subset {u;1,u;2,- -+, uj} of U and a relation R;y o ... i C
Dj1 X - -+ x Dy, where 41,12, - - - ik are distinct. Cj1 ;... ;1 is called a k-ary constraint which
bounds the variables w;1,-- -, w;,. Rj142...; specifies all the allowed tuples of values for
the variables w;1, - - -, u;; which are compatible with each other. A solution to a CSP is an
assignment of a value to each variable from its domain such that all the constraints are
satisfied. A constraint Cj; ;o ... ;1 is satisfied if the tuple of values assigned to the variables
Ui1, -+, Uik is in the relation R;;o...;x . A CSP that has a solution is called satisfiable;
otherwise it is unsatisfiable. In this paper, the probability of a random CSP instance being
satisfiable is denoted by Pr(Sat).

We assume that k& > 2 and all the variable domains contain the same number of values
d = n® in Model RB (where « is a constant). The generation of a random CSP instance in
Model RB is done in the following two steps:
Step 1. We select with repetition t = rnlnn random constraints. Fach random constraint
is formed by selecting without repetition k of n variables.
Step 2. For each constraint we uniformly select without repetition q¢ = p - d* incompatible
tuples of values, i.e., each constraint relation contains exactly (1 —p) - d* compatible tuples
of values.
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The parameter r determines how many constraints are in a CSP instance, while p
determines how restrictive the constraints are.

The following definitions will be needed in section 4 when we derive the expectation of
the second moment of the number of solutions.

Definition 1 An assignment pair is an ordered pair (t;,t;) of assignments to the variables
in U, where t; = (a1, a2, -, ain) and t; = (aj1,a50, -, ajn) with a;,aj € Dy An assign-
ment pair (t;,t;) satisfies a CSP if and only if both t; and t; satisfy this CSP. The set that
consists of all the assignment pairs is denoted by Apgir-

Definition 2 Similarity number S7 : Apgir — {0,1,2,---},
ST((ti,t;)) =Y Sam(au,a;) (1)
I=1

where the function Sam is defined as follows:

1 if ajp = ajp

Sam(aq,aj) = { 0 ifay#aju ?

The similarity number of an assignment pair is equal to the number of variables at which
the two assignments of this assignment pair take the identical values. By Definition 2 it is
easy to see that 0 < S/ ((t;,t;)) < n.

3. Main Results

In this paper, the following theorems are proved.

Theorem 1 Let r. = —ﬁ. If a > %, 0 < p <1 are two constants and k, p satisfy the
inequality k > ﬁ, then

le Pr(Sat) =1 when r < re, (3)
le Pr(Sat) =0 when r > r., (4)

Theorem 2 Let p., =1 — e T, If a > %, r > 0 are two constants and k, « and r satisfy
the inequality ke % > 1, then

lim Pr(Sat) =1 when p < pe, (5)
n—o0
lim Pr(Sat) =0 when p > per (6)
n—o0

4. Proof of Theorem 1 and Theorem 2
The expected number of solutions E(N) for model RB is given by
E'(N) — dn(l _p)rnlnn — nom(l _ p)rnlnn (7)

By the Markov inequality Pr(Sat) < E(N) it is not hard to show that lim,, ,, Pr(Sat) =0
when r > r. or p > p.. Hence relations (4), (6) are proved. It is also easy to see that
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E(N) is eqal to 1 when r = r¢ or p = p¢r, and E(N) grows exponentially with n when
r < Te OF P < Der-

The key point in the proof of relations (3), (5) is to derive the expectation of the second
moment £(N?) and give an asymptotic estimate of it. Let ¢ be a random CSP instance
generated following Model RB. P((¢;,t;)) stands for the probability of (¢;,¢;) satisfying ¢.
Now we start to derive the expression of P((t;,t;)). Since each constraint is generated
independently, we only need to consider the probability of (¢;,%;) satisfying a random con-
straint. Assuming that the similarity number of (¢;,1;) is equal to S, we have the following
two cases:

(1) Each variable of a constraint is assigned the same value in #; as that in ¢;. In this

k _ k
case, the probability of (t;,t;) satisfying the constraint is ( d . L ) / ( dq )

~

k _ k
(2) Otherwise, the probability of (t;,;) satisfying a constraint is ( d . 2 ) ( a; )

The probability that a random constraint falls into the first case is ( }j ) / ( Z ) Hence
the probability into the second case is 1 — ( 'Z ) / ( Z ) Thus we get
dé —1 S dt 2 sy
(") G (5) ()
P((ti,t;) = : t— - ) (8)

d* n n
() (k) (%) (%)
Let Ag be the set of assignment pairs whose similarity number is equal to S . It is easy
to show that the cardinality of Ag is given by
n

4] =d"( g Jd—1)"S (9)

From the definition of F(N?), we have

BNY) = 3 AsIP(tt))
S=0

db —1 S dk -2 S
(", ) Go) (7)) (%)
q q
ot
(,) o) (%)
It is very difficult to analyze the above expression directly. First, we give an asymptotic
estimate of P((t;,t;)). Let s = % It is obvious that 0 < s < 1. By asymptotic analysis, we

M

3

S _1yS _2y... (S _ AT S
G-DGE-2 G 777,1) :Sk+¥+0(%)
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where F(h— 1)(sk gkt
g(s) = HEZ D2 ) ()
and
( drF -1 ) )
4=ty (12)
()
(“;?)
k _ k _
= e - o) (13)
()
Note that d = n®, we have
rnlnn
Ptt) = |09 (554 2+ = (1= st = 2y 4 05 + 01 ) (14)

By use of the condition o > %, we get

rnlnn
P({tt) = (1= prion |14 2 (o 4 2,

1
— (1+0(-)) (15)

For every 0 < s < 1 (where s = %), the asymptotic estimate of |Ag]| is
1 1
A — pon(pe _ 1)n—ns en(—slns—(l—s)ln(l—s)) 14+ 0(=
5] ( ) 2mns(l — s) ( (n))
1 1 1 1
_ 2am (1 n—mns ns n(—slns—(1—s)In(l—s)) -
= 1 1+0 16
e na) (na) 2mns(1 — s)e ( (n)) (16)

Notice that E(N) = n®*(1 — p)™'"" we have

1 n—ms 1 ns n
G

rnlnn
AslP((it) = BV 1 2t 2| Ja+ocy an)

—p n

When n is sufficiently large, except the first term E?(N), |As|P((t;,t;)) is mainly de-
termined by the following terms:

rnlnn
p 1
flo) = [+ st o (13
We can rewrite it as -
f(S) _ e[rln(1+gs )7o¢s]nlnn (19)
Let
A(s) = rin(1 + - Pt~ as (20)

The second derivative of h(s) is

 rkps* 2[(k = 1)(1 — p) — ps]
- (1 —p+ psk)?

h'(s) (21)
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Applying the condition k > ﬁ in Theorem 1 to the above equation we can easily prove
that h”(s) > 0 on the interval 0 < s < 1. For Theorem 2, from the condition ke~ > 1it
follows that the inequality k > 1% still holds when p < p.,.. It is also not hard to show that
h(0) = 0, and h(l) = —rln(l —p) —a < 0 when r < r., or p < p.,. Hence we can easily
prove that the unique maximum point of h(s) is s = 0 when r < r.,. or p < p¢r . Thus the
terms of 0 < s < 1 are negligible when r < ¢ or p < p.; . We only need to consider those
terms near s = 0 . The process can be divided into the following three cases:

Case 1: @« > 1. When S =0 (s = 0), from the definition of g(s) in Equation (11) we

have
rninn

p K, 9(s)
1 =1 22
[t (22)
Thus by Equation (17) we get
1
[As|P({ti; 1)) = B*(N)(1 = —2)" = B*(N) (23)
When S =1 (s = 1), it also not hard to prove that
rnlnn
lim 1+1’ip(s’“+g§f)) =e=1 (24)
Hence we obtain
|As|P((ti,t;)) = E*(N)n' ® when S = 1 (25)
Similary,
) nZ(lfa)
|Ag|P((ti,t;)) = E*(N) when § = 2
n3(1—a)
|As|P((ti, t;)) ~ E*(N) 7 When S =3, (26)
Summing the above terms together, we obtain
n -
E(N?) =) |As|P({ti,t;)) = E*(N)e" " ~ E*(N) (27)

5=0
Case 2: a = 1. By use of the method in Case 1, it can be easily shown that

|As|P((ti,t;)) ~ E*(N)(1 — 1)" ~ EZ(N)1 when S =0

n €

As|P((ti, ;) ~ E*(N)~ when § = 1

e

when S = 2

[ As|P((ti, t5)) = E2(N)e 2l

|As|P({ti,t;)) = E*(N) when S = 3, (28)

e-3!
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Summing the above terms together, we obtain

BN = 37 APt 1) ~ E*(N) o = () (29
S=0

Case 3: 1 < a < 1. Let Sy = n” (where 3 is a constant and satisfies 1—a < 8 < 1—1).

It is not hard to show that when 0 < S < S5 (0 < s <nf~ ! < n_%), the following limit
holds:

lim —2— (s +
n%ool—p n

‘nlnn =0 (30)
Thus when 0 < S < Sp, the asymptotic estimate of the second term in the right of Equation
(17) is

~ e’ =1 when n — oo (31)

p (Sk+g(3))

1-»p n

rnlnn
1+ ]

So when 0 < § < S, the asymptotic estimate of |Ag|P((t;,t;)) is

4s1P (i) = B0 () (1= ) S (32)

It should be noted that ( g )(1 — L)"=9(:%)% is a binomial term whose maximum point
is around S = n!'7%, and Sy = n? > n'~®. By asymptotic analysis, we obtain

SOTL ln_slsnn L s, 1s
S (g )= Y (g )0 - =1 (33)
S=0 S=0
Thus we get
E(N%) = 3 |As|P({t:.1;)) ~ E*(N) (34)
S=0

Combining the above three cases gives

E(NQ) ~ EQ(N) when r < r or when p < per (35)
Hence
. E?(N)
nlggo E(N?) =1 when r < r¢, or when p < p, (36)

By the Cauchy inequality Pr(Sat) > g?}vj\% (Bollobés, 1985), it can be easily proved

that lim,,_, o Pr(Sat) =1 when r < r¢ or p < pe. Hence Theorem 1 and Theorem 2 are
proved.
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5. The Relation between Model B and Model RB

In this section we will explain in detail how Model RB revises Model B and show the
hardness of Model RB by relating it to Model B. From the previous papers (Gent et al.,
1999; Smith & Dyer, 1996) we know that the generation of a random CSP instance in the
standard Model B (which is often written as (n, d, p1, p2)) is done in the following two steps:
Step 1. We select with repetition t = plw random constraints. Each random constraint
is formed by selecting without repetition 2 of n variables.

Step 2. For each constraint we uniformly select without repetition q = py - d? incompatible
tuples of values, i.e., each constraint relation contains exactly (1 — py)-d? compatible tuples
of values.

Since the standard Model B is a binary CSP model, we will only consider the binary
case of Model RB in this section. In the previous papers Model B was used to test the
CSP algorithms in the following way. Given the values of n, d and p;, the constraint
tightness po was varied from 0 to 1 in steps of %. At each setting of (n,d,p1,p2) a fixed
number of instances (e.g. 100) were generated. The search algorithm was then applied
to each instance. Finally numerous statistics about the search cost and the probability of
being satisfiable were gathered. In fact, the two steps of forming a constraint and selecting
incompatible tuples of values in Model RB is exactly the same as those in Model B. The
significant difference between Model B and Model RB is that Model RB restricts how fast
the domain size and the number of constraints increase with the number of variables while
Model B does not, which may lead to the result that many instances of Model B suffer from
being asymptotically trivially insoluble (Achlioptas et al., 1999) while Model RB avoids this
problem. But it is easy to see that given the values of n, d and p1, for the setting (n, d, p1,p2)
of Model B there is an equivalent setting in Model RB with the same number of variables

as that in (n,d,p1,p2), @ = 24 and r = pg(ﬁl_nl) (Let n® =d and rnlnn = %pln(n —1)).

Inn

Theorem 2 shows that if « > % and 2e¢”+ > 1, then there exists an exact phase transition

in the binary case of Model RB. Given the values of n, d and p; in Model B, for the setting
of (n,d, p1,p2), the conditions that the equivalent setting in Model RB satisfies Theorem 2

are

a=—>-=d>>n (37)

a _Ind, _2Inn 2Ind
2e 7 > 1= 2e nnpiln-1) >1 = >
€= ¢ ' - pl_(n—l)ln2

The proof of Theorem 2 reveals that if the conditions (37), (38) are satisfied, then Model
RB will exhibit an exact phase transition at E(N) = 1. It should be noted that Williams
and Hogg (Williams & Hogg, 1994), and independently Smith (1996) have already developed
a theory to predict the phase transition point in Model B on the basis of E(N) = 1. Prosser
(1996) found that this theory is in close agreement with the empirical results, except when
p1 is small. Inequality (38) shows that in order to make the equivalent setting in Model RB
satisfy the conditions of Theorem 2, the parameter p; in Model B should not be less than
a certain value, which is consistent with Prosser’s experimental finding.

(38)

Now we consider a typical setting (20, 10,0.5,ps) of Model B. Let n = 20, o = iﬁ—%g ~
0.7686 and r = 0'2(13102_01) ~ 1.5856 in Model RB. Then the setting of Model RB with such

values is equivalent to the setting (20, 10,0.5,p2) of Model B. From Inequalities (37) and
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(38) it is also not hard to show that the equivalent setting in Model RB corresponding to
the setting (20, 10,0.5,po) satisfies the conditions of Theorem 2, i.e., 102 > 20 and p; =
0.5 > (202_1“% ~ 0.35. The experiments done by Prosser (1996) show that the instances
generated at po = 0.38 are very hard to solve. This maximum cost point also agrees well with
the asymptotic phase transition point of Model RB that is p = l—e 7 ~ 1—e 15856 ~ 0.38.
For some other settings of Model B in the previous work, we can also find their equivalent
settings in Model RB using this method. Thus the hardness of solving these settings of
Model B is equal to that of solving their equivalent settings in Model RB. From many
previous studies (Gent et al., 1999; Smith & Dyer, 1996; Prosser, 1996) we know that the
instances generated at the phase transition in many settings of Model B are very hard to
solve for various kinds of CSP algorithms. So there exist a lot of hard instances to solve in

Model RB.

6. Conclusions and Future Work

A lot of experimental and theoretical studies indicate that a phase transition in solvability
is a very important feature of many decision problems in computer science. It is shown
that these problems can be characterized by a control parameter in such a way that the
space of problem instances is divided into two regions: the under-constrained region where
almost all problems have many solutions, and the over-constrained region where almost all
problems have no solutions, with a sharp transition between them. Another interesting
feature associated with the phase transition is that the peak in hardness of solving the
problem instances occurs in the transition region. Since these instances generated in the
transition region appear hardest to solve, they are commonly used as a benchmark for
algorithms for many NP-complete problems. But unfortunately, except for the Hamiltonian
cycle problem (which is NP-complete), all the decision problems that have exact results
about the existence and the location of the phase transition are in P class (Parkes, 1997),
e.g. random 2-SAT. These problems are not so interesting as the NP-complete problems
from a complexity theoretic point of view because they can be solved in polynomial time. For
the Hamiltonian cycle problem, using an improved backtrack algorithm with sophisticated
pruning techniques, Vandegriend and Culberson (1998) recently found that the problem
instances in the phase transition region are not hard to solve.

In this paper we proposed a new type of random CSP model, Model RB, which is a
revision to the standard Model B, and the asymptotic analysis of this model has also been
presented. The results are quite surprising. We can not only prove the existence of phase
transitions in this model but also know the location of transition points exactly. It was
further shown that there exist a lot of hard instances in Model RB by relating its hardness
to the standard Model B. Since there is still some lack of studies about the exact derivation
of the phase transitions in NP-complete problems, this paper may provide some new insight
into this field. However, we did not discuss the scaling behaviour of Model RB and some
other related issues in this paper. In order to get a better understanding of Model RB,
we suggest that future work should include determining either empirically or theoretically
whether or not hard instances persist with reasonably high frequency as the number of
variables increases. !

1. Two anonymous referees suggest this point.
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