https://doi.org/10.1007/s11704-025-50231-4

RESEARCH ARTICLE

SAT requires exhaustive search

Ke XU, Guangyan ZHOU?

1. State Key Laboratory of Complex and Critical Software Environment, Beihang University, Beijing 100191, China

2. Department of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China

Received March 7, 2025; accepted May 18, 2025
E-mail: kexu@buaa.edu.cn

© The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

Abstract

In this paper, we identify the distinction between non-brute-force computation and brute-force computation as the most fundamental problem in

computer science. Subsequently, we prove, by the diagonalization method, that constructed self-referential CSPs cannot be solved by non-

brute-force computation, which is stronger than P # NP. This constructive method for proving impossibility results is very different (and

missin, rom existing approaches in computational complexity theory, but aligns wit odel’s technique for proving logical impossibility.
issing) fi isting approaches i putational plexity theory, but alig ith Godel’ hnique for proving logical impossibility

Just as Godel showed that proving formal unprovability is feasible in mathematics, our results show that proving computational hardness is not

hard in mathematics. Specifically, proving lower bounds for many problems, such as 3-SAT, can be challenging because these problems have

various effective strategies available to avoid exhaustive search. However, for self-referential examples that are extremely hard, exhaustive

search becomes unavoidable, making its necessity easier to prove. Consequently, it renders the separation between non-brute-force

computation and brute-force computation much simpler than that between P and NP. Finally, our results are akin to Godel’s incompleteness

theorem, as they reveal the limits of reasoning and highlight the intrinsic distinction between syntax and semantics.

Keywords

CSP; SAT; exhaustive search; brute-force computation; lower bounds; self-reference; Model RB

H 1 Introduction

Model RB is a random constraint satisfaction problem (CSP) model
that was proposed by Xu and Li [1] in 2000, which could also be
encoded to well-known NP-complete problems like SAT and
CLIQUE. The purpose of this model was to address the issue of
trivial unsatisfiability that was prevalent in previous random CSP
models. One of the key features of Model RB is that its domain size
d grows with the number of variables 7. Additionally, Model RB has
been proved to exhibit exact phase transitions from satisfiability to
unsatisfiability, making it a useful tool for analyzing and evaluating
the performance of algorithms. Over the last two decades, Model RB
has been extensively researched from multiple perspectives, as
evidenced by various studies (e.g., [2-21]). Moreover, this model has
gained significant popularity and widespread use in renowned
international algorithm competitions. A random instance of Model
RB with a planted solution named frb100-40, where n = 100 and
d =40, has remained elusive since it was made available online in
2005 as a 20-year challenge for algorithms!. Despite numerous
attempts, no one has been able to solve it thus far. In summary, the

results suggest that Model RB possesses nice mathematical

1) See tinyurl.com/2p53xbd7 website.

properties that can be easily derived. In contrast to its mathematical
tractability, the random instances of this model, particularly those
generated in the phase transition region, present a significant
challenge for various algorithms, proving to be extremely difficult to
solve.

As shown in the proof of Gdodel’s incompleteness theorem [22], the
constructive approach plays an indispensable role in revealing the
fundamental limitations of finite formal systems. An algorithm is
essentially a mechanized finite formal system. In this paper, we will
study the limitations of algorithms based on the constructive
approach. Specifically, we will explore whether non-exhaustive (non-
brute-force) algorithms can always replace exhaustive (brute-force)
ones, or if some computable problems inherently lack such
(23]
conjectures that there is no non-brute-force algorithm for SAT. This

alternatives. The Strong Exponential Time Hypothesis
problem is very similar to the foundational problem resolved by
Godel’s incompleteness theorem, originally proposed by David
Hilbert nearly a century ago: whether a finite formal system can
always replace a branch of mathematics (e.g., arithmetic) that

contains infinitely many true mathematical statements. These two

Frontiers of Computer Science | Issuc 12 | Volume 19 | December 2025 | 1912405-1

mailto:kexu@buaa.edu.cn
https://doi.org/10.1007/s11704-025-50231-4
https://doi.org/10.1007/s11704-025-50231-4
https://doi.org/10.1007/s11704-025-50231-4
https://doi.org/10.1007/s11704-025-50231-4
https://doi.org/10.1007/s11704-025-50231-4
https://doi.org/10.1007/s11704-025-50231-4
https://doi.org/10.1007/s11704-025-50231-4

Ke XU et al.

problems raise essentially the same deep philosophical question: can
the part always replace the whole within the limits of reasoning? This
inquiry concerns the limits of human knowledge —a subject
extensively explored by many great philosophers (e.g., Laozi, Zeno,
Socrates, Descartes, Kant, and Wittgenstein). Therefore, the most
fundamental problem in computer science is non-brute-force
computation vs. brute-force computation, rather than P vs. NP. From
a mathematical perspective, the distinction between non-brute-force
computation, which takes O(T°) time (where ¢ <1 is a constant),
and brute-force computation, which takes 7T time, seems more
natural and intuitive compared to that between P and NP. From a
practical standpoint, the framework of non-brute-force computation
vs. brute-force computation is also broader and more universally
applicable than that of P vs. NP. For instance, the P vs. NP paradigm
does not apply to problems where brute-force algorithms run in
polynomial time or those that lie outside NP. However, even in such
cases, we can still explore the possibility of developing non-brute-
force algorithms. Finally, from a historical perspective, non-brute-
force computation vs. brute-force computation extends Godel’s
framework, which unveils the limits of mathematics. Similarly, P vs.
NP builds on Turing’s framework, shedding light on the limits of
machines. The limits of mathematics are more fundamental than
those of machines, as anything mathematics cannot achieve is also
beyond the reach of machines.

The advantages of Model RB enable us to choose specific
threshold points at which instances with a symmetry requirement are
on the edge of being satisfiable and unsatisfiable. In fact, we will
show that there exist instances at exactly the same point which are
either satisfiable with exactly one solution or unsatisfiable but only
fail on one constraint. The satisfiability of such instances can be
flipped under a special symmetry mapping. As a result, they form a
fixed point set under this mapping, allowing us to create the most
indistinguishable examples (self-referential examples) which are a
source of computational hardness. Based on the symmetry mapping
and driven by the famous method of diagonalization and self-
reference, we show that unless exhaustive search is executed, the
satisfiability of a certain constraint (thus the whole instance) is
possible to be changed, while the subproblems of the whole instance
remain unchanged. Therefore, whether the whole instance is
satisfiable or unsatisfiable cannot be distinguished without
exhaustive search. In summary, if we can construct the most
indistinguishable examples with exactly the same method and the
same parameter values (a task that is both rare and challenging), then
it is not hard to understand and prove why they are extremely hard to
solve.

Hl 2 Model RB

A random instance I of Model RB consists of the following:

e A set of variables X = {x1,...,
values from its domain D;, and the domain size is |D;| =d,

X, }: Bach variable x; takes

where d =n® fori=1,...,n, and @ > 0 is a constant.
e A set of constraints C ={Cy,...,Cp,} (m=rnind, where
r>0 i=1,..m,

is a constant): for each constraint

SAT requires exhaustive search

Ci=X;,Ri). X; = (x;,,%i,,...,%;,) (k>2 is a constant) is a
sequence of k distinct variables chosen uniformly at random
without repetition from X. R; is the permitted set of tuples of
values which are selected uniformly without repetition from
the subsets of Dj, X Dy, X-+XDj,, and |Ri| = (1 - p)d*
where 0 < p < 1 is a constant.

In this paper, we have a symmetry requirement of the permitted set
of each constraint, and the m permitted sets will be generated in the
following way. Initially, we generate a symmetry set R which
contains (1 — p)d* tuples of values, then generate each permitted set
R; of the constraint C; (i=1,2,...,m) by running random
permutations of domains of k— 1 variables in X; based on R. For
example, if k =2 and the domains are D1 = Dy = {1,2,3,4}, then
R={(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)} is a
symmetry set. If we run a random permutation of Dip, e.g.,
F(1)=3,f/2)=1,f(3) =4, f(4) =2, then we get a permitted set
{(3,1),(3,2),(1,1),(1,2),(4,3),(4,4),(2,3),(2,4)}. Through this
method all R;(i =1,...,m) are isomorphic and every domain value
of the variables shares the same properties.

A constraint C; = (X;, R;) is said to be satisfied by an assignment
0 €D XDyX---X D, if the values assigned to X; are in the set
R;. An assignment o is called a solution if it satisfies all the
constraints. I is called satisfiable if there exists a solution, and called
unsatisfiable if there is no solution. It has been proved that Model RB
not only avoids the trivial asymptotic behavior but also has exact
phase transitions from satisfiability to unsatisfiability. Indeed, denote
Pr[I is SAT] the probability that a random instance I of Model RB
is satisfiable, then

Theorem 2.1 ([1]). Let 7 = ﬁ. Ifa>1/k, 0<p<1 are

two constants and k, p satisfy the inequality k > 1/(1 — p), then
lim Pr[/is SAT 1=1if r<rg,
n—oo
Iim Pr[/is SAT 1=0if r > re,.

n—oo

In the following we will present some properties of Model RB

which are important to prove our main theorems in the next section.
i = 0 — 2
From here on we tacitly take » = r¢,+ 13—, where 0= “Im(-p)°

and take

2
a>max{l,inf{a:w<0}’_2(100) In(1-p) 100In(1 p)}’

99 k7 kln(l- g)
2.1
where w=1+a(l—ry,pk). In fact note that w=1+
a(l + %), and a simple calculation yields that
pk+In(1-p)>0 for all pe€(0,1) under the condition that
k> ﬁ Thus it is possible to take @ > 0 large enough such that
w<0.
First, we bound the probability that a random RB instance is

satisfiable.

Lemma 2.2 Let I be a random CSP instance of Model RB with n
variables and rnInd constraints. Then

Frontiers of Computer Science | ssuc 12 | Volume 19 | December 2025 | 1912405-2

Front. Comput. Sci., 2025, 19(12): 1912405

<Pr(lis SAT)<

l\)l>—‘

1
3

Proof Let X be the number of solutions of I, then

PI‘(X > 0) dn(l p)rnlnd - _ (22)
As shown in [1],
n (S) (S) rnlnd
E[x2]=2d"()(d 1S ((1 P +(1-p)2(1_%)]
§=0 (k) (k)
_E[X]2(1+0())ZF(S)
(2.3)

where F(S) = (2)(1— 37)"—5 (5)3 [1 N %sk]mlnd,

the number of variables for which an assignment pair take the same

and § =ns is

values. Note that @ > 1, using an argument similar to that in [1,7],
we obtain that only the terms near S =0 and S =n are not
negligible, and

E[x2] 1
EIXP m+o(1) 3+o(1).

Indeed, asymptotic calculations show that

F(0)=1-0(1),F(i)=(1+o(1))n"!",
F(n—i)=1+o(1))exp{i(lnn +Ind — pkrind)}/E[X],
F(n) = 1/E[X],
where i=1,2,... Note that exp{i(lnn+Ind-
pkrind)} = n'*°M) and @ > 1,w < 0 are constants, thus the upper
bound of (2.4) comes from F(0) and F(n).
Using the Cauchy inequality, we get Pr(X >0)>E[X]?/
E[X?] > §. O

(2.4)

is an integer.

As an immediate consequence of Lemma 2.2 we obtain a lower
bound of the probability that I has exactly one solution.

Corollary 2.3 Let / be a random CSP instance of Model RB with n
variables and rnlnd constraints. Then the probability that / has
exactly one solution is at least 1/6.

Proof Let p; be the probability that I has exactly one solution, and
P>2 be the probability that I has at least two solutions. Then from
Lemma 2.2, we have

1

E[X] = = > p1 +2p52,

Pr(X>0)=p1+p >

UJI»—A

Therefore p; > 1/6. o

Next we show that if a random instance is unsatisfiable, then
w.h.p.2) it fails at only one constraint. We introduce the following
definitions.

Definition 2.1 Let / be a CSP instance. A constraint C is called a
self-unsatisfiable constraint if there exists an assignment under which
C is the only unsatisfied constraint in I. If variable x is contained in
C, then x is called a self-unsatisfiable variable. If I is unsatisfiable
and every variable is a self-unsatisfiable variable, then I is called a
self-unsatisfiable formula.

Lemma 2.4 Let I be a random CSP instance of Model RB with n
variables and rnInd constraints. If 7 is unsatisfiable, then w.h.p. I is
a self-unsatisfiable formula.

Proof First we show that for any constraint C of I, with positive
probability there exists an assignment which satisfies all constraints
except C. In fact let N be the number of such assignments, then

E[N]
o)

— dn(l _p)rnlnd—lp (25)

Using a similar argument as in [1], we have
2 n n—S (S) 2
N]—Zd (d-1y"5| (1- p>(>+<1 P
k
(i) : (‘2)]
pT+p (1—7 .
[() (x)

Hence, (2.3),(2.4) and (2.5) ensure that

rnlnd-1

1-
~ E[xZ] 1+ Tpsk

a E[X]2

E[N?]
E[N]?

2
<1E[X]

1+ l%sk pE[X]?

Then Pr(N > 0) >

self-unsatisfiable constralnt is at least 3 .

= 2 Therefore the probability that C is a

Next, since the number of constraints is 7n1lnd, the average degree
of each variable x € X is rkInd. By the Chernoff Bound,

Pr [Deg(x) erlnd} < ¢~ O9/100PrkInd[2 _ ,~(99/100)%rkal2

100

where Deg(x) denotes the degree of variable x. From the
requirement (2.1) we know that 1 —(99/ 100)?rka/2 < 0, thus
(2.6)

nPr[Deg(x) erlnd] o(1).

100

. 1
Therefore, almost surely all variables have degree at least Tog /" kInd .
. . 1
Furthermore, note that each variable appears in at least 7op” kInd
constraints and the probability that each constraint appears to be a

self-unsatisfiable constraint is at least %, thus the probability that x

1
. . . . klnd
is not a self-unsatisfiable variable is at most (] é’) 00"

100 wsrkaln(l — p/3) <0, therefore

the probability that there exists a variable which is not self-
unsatisfiable is at most

Note that (2.1) entails that 1+ 55

_p 2.7)

5 rkind
n(l p)wo _ nnﬁrkaln(l—pﬂ) =o(1).

Thus w.h.p. all variables are self-unsatisfiable variables. mi

2) We say a property holds w.h.p. (with high probability) if this property holds with probability tending to 1 as the number of variables approaches infinity.

Frontiers ofComputer Science |Issuc 12 | Volume 19 | December 2025 | 1912405-3

Ke XU et al.

Remark 2.1 We claim that Lemmas 2.2 and 2.4 hold for any domain
size greater than polynomial. Take exponential domain size d = 8"
(where 8> 1 is a constant) for example, similarly, the dominant
contributions of E[X2]/E[X]?> come from F(O)=1-0(1) and
F(n)=1/E[X], that
F(i) = O((4)") and

and asymptotic calculations show

Fn—i)=(1 +0(1))ﬁ exp{ilnn+i(1 + %)md}

are negligible for small integer i, since 1+ ﬁ < 0. Moreover,
probability analysis holds more easily in the proof of Lemma 2.4 if
d=p" ((2.6) and (2.7)).

Next we define a symmetry mapping of a constraint which changes
its permitted set slightly.

Definition 2.2 Consider a random instance / of Model RB with
k =2. Assume that C = (X, R) is a constraint of / and X = (x1,X2),
then a symmetry mapping of C is to change R by choosing
(ur #u2), vi,va€Dy (Vi #W),
(u1,v1),(u2,v2) € R and (uy,v3),(u2,v1) ¢ R, and then exchanging
uy with uy (see Fig. 1).

ui,upy € Dy where

With the above properties of Model RB, we obtain the following
interesting results.

Theorem 2.5 There exists an infinite set of satisfiable and
unsatisfiable instances of Model RB such that this set is a fixed point

under the symmetry mapping of changing satisfiability.

Proof Let J be the set of RB instances with n variables and rnlnd
constraints, where each instance either has a unique solution or has
no solution.

Assume that / € 7 has exactly one solution o, which happens
with probability at least 1/6 from Corollary 2.3. For an arbitrary
that C’'=(X',R),
X' =(x,x1),0(x) =u,0(x1) =v, and D,D; are the domains of x

constraint C’, assume without loss

and xp, respectively. By the symmetry requirement, there exist

Symmetry

mapping

(A)

Fig. 1

exchanging the domain value 2 with 3 in D;, where

SAT requires exhaustive search

u' €D,V €D W V)ER ,(uV)ER ,(W,v)¢R,

then we will exchange u# with u’. It is easy to see that this symmetry

such that

mapping will convert (#,v) into an unpermitted tuple and convert
(u,v"),(,v) into permitted tuples, thus o is no longer a solution.
that at 2(1-p)d pairs
(u,*),(u',*) € R can be expanded to new solutions (this is because

However, it is possible most
by the symmetry requirement, the degree of each domain value of
each variable is (1 — p)d). Specifically, the probability that (u,V")
can be expanded to a

n—2 rnlnd—-1 _ 1
d (1_[7) - 2(]*p)d2’

the probability that [is still satisfiable after the symmetry mapping is
at most 0(}1) =o(1).

Assume that I € 7 is an unsatisfiable instance, then w.h.p. all

new solution is at most

thus a simple calculation yields that

variables in I are self-unsatisfiable variables from Lemma 2.4. This
implies that there exist a constraint C”” € Cy and an assignment T
such that C” is the only unsatisfied one under 7. Assume without
loss that C” =(X"”,R"),X” = (x,x),7(x) = u,7(x2) =w, and
D, D; are the domains of x and x2, respectively. It is apparent that
(u,w)¢R”. By our symmetry requirement, there exist
u' € D,w' € Dy, where (u,w'),(w',w)eR” and (u',w')¢&R",
such that a symmetry mapping of exchanging # with ©’ will convert
(u,w) into a permitted tuple, thus C”” becomes satisfiable under 7.
Moreover, using a similar argument as above, we can see that the
probability that the new pairs (u,%*),(u’,*) € R could expand to
solutions is at most 0(%) =0(1). Thus w.h.p. I has only one
solution after this symmetry mapping.

From the above two cases we can see that for any I € 7, the
symmetry mapping changes its satisfiability, however, I still belongs
to I after the mapping, thus 7 can be considered as a fixed point
under the symmetry mapping. o

In this section, it has been shown that we can construct satisfiable
and unsatisfiable instances using exactly the same method and the
same parameter values. Moreover, these satisfiable and unsatisfiable
instances can be transformed into each other by performing the same

Symmetry

mapping

(A) shows a symmetry mapping of the constraint C by exchanging u; with uy. (B) shows an example of a symmetry mapping by
we set Dj=Dp={1,2,3,4)

and the original permitted set

R={(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)}. R becomes {(1,1),(1,2),(2,3),(2,4),(3,1),(3,2),(4,3),(4,4)} after such a symmetry

mapping. Thus for an assignment o, if o(x;) =2,0(x) =2, then C changes from satisfiable to unsatisfiable under o, since (2,2) does not

belong to the permitted set R any more; for an assignment 7, if 7(x;) =2,7(x2) =3, then C changes from unsatisfiable to satisfiable under 7,

since (2,3) belongs to the permitted set R after this symmetry mapping

Frontiers of Computer Science | issuc 12 | Volume 19 | December 2025 | 1912405-4

Front. Comput. Sci., 2025, 19(12): 1912405

mapping. This property is very similar to that of the self-referential
proposition introduced by Gdodel [22] in order to prove that such a
proposition can be neither proved nor disproved (i.e., whether this
proposition is true or false cannot be distinguished in finite formal
systems). Godel’s results reveal the fundamental difference between
the syntax defined by rules and the semantics defined by models (or
assignments). An algorithm is essentially a finite sequence of rules,
which can also be viewed as a finite formal system. In contrast, the
exhaustive search method determines, using the semantic definition
of a property, whether this property can be satisfied through trying
every possible model (or assignment) one by one. Inspired by Godel’s
idea, we refer to these satisfiable and unsatisfiable instances as the
most indistinguishable examples or self-referential examples. Their
self-referential property makes them extremely hard to differentiate
syntactically. Simply put, in this context, syntax cannot replace
semantics.

B 3 Main results

Proving complexity lower bounds (algorithmic impossibility results)
for a given problem is essentially reasoning and making conclusions
about an infinite set of algorithms. In mathematics, any such
conclusion should be based on assumptions about the nature of the
infinite set. These assumptions must be consistent with the reality
and usually appear as axioms. Similar to many combinatorial
problems, the general CSP has no global structure that can be
exploited to design algorithms. The only exact algorithm currently
available for solving CSPs is a divide-and-conquer method that
systematically explores the solution space while employing various
pruning strategies to enhance efficiency.

In this paper, we view an algorithm as a finite formal system which
is defined by a finite set of symbols and rules. It is easy to see that
finite formal systems possess greater expressive power than
algorithms (Turing machines). This is because finite formal systems
are essentially finite sets of rules while algorithms are essentially
finite sequences of rules. Here we use finite formal systems to solve
CSPs (i.e., to determine if a CSP instance is satisfiable). We only
need to assume that this task is finished by dividing the original
problem into subproblems. Under this assumption, we have the
following lemma.

Lemma 3.1 If a CSP problem with 7 variables and domain size d
can be solved in T'(n) = O(d") time (0 < ¢ < 1 is a constant), then
at most O(d®) subproblems with 7 — 1 variables are needed to solve
the original problem.

Proof It is easy to see that d subproblems with 7 —1 variables are
sufficient to solve the original problem. By condition, a CSP problem
with n— 1 variables can be solved in T (n — 1) time. Note that

T(n) = O(d") = O(d°d“™ V) = Od)T(n - 1),
thus at most O(d) subproblems with n— 1 variables are needed to

solve the original problem. |

The above lemma is a key to proving the main results of this paper.
For a better understanding, we take the classical sorting problem as

an example. Assume that our goal is to prove that sorting # elements
cannot be done in 7T'(n) = O(n) time. By condition, we have
Tm)=0n—-1)+0(1)=Tn—-1)+0O(1). This means that we
need a subproblem of n—1 elements with additional O(1)
operations to solve the original problem. We can show by
contradiction that this is impossible and so finish the proof.

Theorem 3.2 Model RB cannot be solved in O(d") time for any
constant 0 < c < 1.

Proof For the sake of simplicity, we will prove that Theorem 3.2
holds for Model RB with k=2 by contradiction. Let / be a RB
instance with n variables and rnlnd constraints. Suppose there
exists some constant 0 < ¢ < 1 such that I can be solved in O(d")
time, then Lemma 3.1 implies that I can also be solved by assigning
at most O(d®) values to an arbitrary variable, say x, and then solving
the resulting subproblems (with n—1 wvariables) which require
O(d“™) time. We will show that there exist instances where the
O(d®) subproblems produced by assigning O(d®) values to x are
impossible to determine its satisfiability. For convenience, let D be
the domain of x,) be the set of O(d®) values which have been
assigned to X (|5| = 0(d°)), and Cy, be the set of constraints
containing X.

Follow the strategy of the proof of Theorem 2.5, if [is an instance
having exactly one solution o, then the constraint C’ will be
arbitrarily selected from Cy. Note that O(d°) is o(1) compared with
the domain size d, thus the probability that u belongs to p is o(1).
Therefore the symmetry mapping in Theorem 2.5 will be performed
by exchanging u with u’, where #’ is chosen from D\D, then I
becomes unsatisfiable. Similarly, if I is an unsatisfiable instance,
then the symmetry mapping of exchanging u with u’, where u’ is
chosen from D\B, will convert (1, w) into a permitted tuple, thus /
becomes satisfiable.

Note that in either of the above cases, the O(d®) subproblems with
n—1 variables remain unchanged, while the satisfiability of the
original problem with 7 variables has been changed after performing
o(d°)

subproblems are insufficient thus impossible to determine if I is

the symmetry mapping. We can conclude that the

satisfiable or unsatisfiable. This completes the proof of Theorem 3.2.
m

As mentioned before, finite formal systems possess greater
expressive power than algorithms (Turing machines). The above
theorem indicates that no finite formal system for solving Model RB
can significantly outperform or replace the exhaustive search method,
which evaluates d" possibilities one by one. That is to say, non-
brute-force computation cannot replace brute-force computation for
Model RB. More interestingly, the above proof follows the same
method (i.e., diagonalization and self-reference) used by Kurt Godel
[22] and Alan Turing [24], respectively, in their epoch-making
papers of proving logical and computational impossibility results.
This classical method, pioneered by Cantor, stands out as not only
simple, elegant, and powerful, but also as the only approach that has
lower bounds

successfully provided on complexity classes.

Frontiers of Computer Science | issuc 12 | Volume 19 | December 2025 | 1912405-5

Ke XU et al.

Moreover, the distinctive mathematical properties and the inherent
extreme hardness of Model RB make it both feasible and effective in
establishing algorithmic impossibility results. Importantly, applying
this method to constructed instances, rather than directly to
complexity classes, is crucial for achieving a successful proof. This
study highlights the significance of creatively utilizing classical
methods, particularly when addressing long-standing open problems.
We believe that the underlying idea of this paper (i.e., Constructing
the Most Indistinguishable Examples) will unlock the door to proving
complexity lower bounds, which has always been a challenging task,
even for many polynomial-time solvable problems.

It is worth mentioning that Xu and Li [3] established a direct link
between proved phase transitions and the abundance with hard
examples by proving that Model RB has both of these two properties.
They also made a detailed comparison between Model RB and some
other well-studied models with phase transitions, and stated that
“such mathematical tractability should be another advantage of
RB/RD, making it possible to obtain some interesting results which
do not hold or cannot be easily obtained for random 3-SAT”. This
paper confirms that remarkable results can indeed be achieved
through a simple and elegant approach, as expected. More than two
thousand years ago, Laozi, a great Chinese thinker and philosopher,
once said: "The greatest truths are the simplest". We believe that the
truth of computational hardness should also adhere to this
fundamental and universal principle advocated by Laozi. In this
sense, both the problem and the results of this paper are simple yet
intuitively accessible. Additionally, if a problem is so difficult that
there are no nontrivial results, then the most likely scenario is that the
problem under study is not inherently foundational. In such a case,
what should be done is to redefine the problem in alignment with
Laozi’s principle. Foundational problems must be grounded in
fundamental concepts. In this paper, we argue that non-brute-force
computation vs. brute-force computation is more foundational than P
vs. NP. This is because the concept of brute-force computation is
inherently more fundamental than that of polynomial-time
computation.

CSP can be encoded into SAT by use of the log-encoding [25]
which introduces a new Boolean variable for each bit in the domain
value of each CSP variable and thus uses a logarithmic number of
Boolean variables to encode domains. It must be emphasized that
each clause of these encoded SAT instances could be very long with
O(log, d) Boolean variables if the domain size d grows with the
number of CSP variables 7. This is in sharp contrast to 3-SAT that is
very short in clause length and has received the most attention in the
past half-century. For encoded SAT instances of Model RB using the
log-encoding, we have totally N =nlog,d Boolean variables,
O(Nd*) clauses and O(Nd* log,d) literals. Note that d" =
penlogad — 2eN g4 it is easy to derive the following corollary from
Theorem 3.2.

Corollary 3.3 SAT with N Boolean variables cannot be solved in
0(2N) time for any constant 0 < ¢ < 1.

The above corollary holds for SAT with no restriction on the clause
length, and so is not directly applicable to k-SAT with constant

SAT requires exhaustive search

k>3 whose lower bounds can be obtained by reduction from
encoded SAT instances of Model RB. Other CSP instances of
domain size [can also be encoded from Model RB using
N =nlog,;d variables, thus cannot be solved in O(IN) time for any
constant 0 < ¢ < 1.

It is well-known that SAT is NP-complete [26], and so it follows
that P # NP.

B Competing interests

Ke XU is Deputy Editors-in-Chief of the journal and a co-author of
this article. To minimize bias, he was excluded from all editorial
decision-making related to the acceptance of this article for
publication. The remaining authors declare no conflict of interest.

H Open Access

This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if
changes were made.

The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

W References

[1] Xu K, Li W. Exact phase transitions in random constraint
satisfaction problems. Journal of Artificial Intelligence Research, 2000,
12(1): 93-103

[2] Xu K, Boussemart F, Hemery F, Lecoutre C. A simple model to
generate hard satisfiable instances. 19th
International Joint Conference on Artificial Intelligence. 2005, 337-342

In: Proceedings of the

[3] Xu K, Li W. Many hard examples in exact phase transitions.
Theoretical Computer Science, 2006, 355(3): 291-302

[4] Xu K, Boussemart F, Hemery F, Lecoutre C. Random constraint
satisfaction: easy generation of hard (satisfiable) instances. Artificial
Intelligence, 2007, 171(8-9): 514-534

[5] LiuT, Lin X, Wang C, Su K, Xu K. Large hinge width on sparse
random hypergraphs. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence. 2011, 611-616

[6] Cai S, Su K, Sattar A. Local search with edge weighting and
configuration checking heuristics for minimum vertex cover. Artificial
Intelligence, 2011, 175(9—-10): 1672—1696

[7] Zhao C, Zheng Z. Threshold behaviors of a random constraint
satisfaction problem with exact phase transitions. Information Processing
Letters, 2011, 111(20): 985—988

[8] Saitta L, Giordana A, Cornuejols A. Phase Transitions in Machine

Frontiers ofComputer Science |Issuc 12 | Volume 19 | December 2025 | 1912405-6

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Front. Comput. Sci., 2025, 19(12): 1912405

Learning. Cambridge: Cambridge University Press, 2011

[9] Zhao C, Zhang P, Zheng Z, Xu K. Analytical and belief-
propagation studies of random constraint satisfaction problems with
growing domains. Physical Review E, 2012, 85(1): 016106

[10] Fan'Y, Shen J, Xu K. A general model and thresholds for random
constraint satisfaction problems. Artificial Intelligence, 2012, 193: 1-17
[11] Lecoutre C. Constraint Networks:
Techniques and Algorithms. John Wiley & Sons, 2013

[12] Huang P, Yin M. An upper (lower) bound for Max (Min) CSP.
Science China Information Sciences, 2014, 57(7): 1-9

[13] Xu W, Zhang P, Liu T, Gong F. The solution space structure of

Targeting Simplicity for

random constraint satisfaction problems with growing domains. Journal
of Statistical Mechanics: Theory and Experiment, 2015, 2015: P12006
[14] Liu T, Wang C, Xu K. Large hypertree width for sparse random
hypergraphs. Journal of Combinatorial Optimization, 2015, 29(3):
531-540

[15] Knuth D E. The Art of Computer Programming. Addison-Wesley
Professional, 2015

[16] Xu W, Gong F. Performances of pure random walk algorithms on
constraint satisfaction problems with growing domains. Journal of
Combinatorial Optimization, 2016, 32(1): 51-66

[17] Fang Z, Li C M, Xu K. An exact algorithm based on MaxSAT
reasoning for the maximum weight clique problem. Journal of Artificial
Intelligence Research, 2016, 55(1): 799-833

[18] Wang X F, Xu D Y. Convergence of the belief propagation
algorithm for RB model instances. Journal of Software, 2016, 27(11):
27122724

[19] Li C M, Fang Z, Jiang H, Xu K. Incremental upper bound for the
maximum clique problem. INFORMS Journal on Computing, 2018,
30(1): 137153

[20] Karalias N, Loukas A. Erdés goes neural: an unsupervised learning
framework for combinatorial optimization on graphs. In: Proceedings of

the 34th International Conference on Neural Information Processing

B Appendixes

Systems. 2020, 6659—6672

[21] Zhou G, Xu W. Super solutions of the model RB. Frontiers of
Computer Science, 2022, 16(6): 166406

[22] Godel K. Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I. Monatshefte fiir Mathematik
und Physik, 1931, 38(1): 173—198

[23] Calabro C,
satisfiability of small depth circuits. In: Proceedings of the 4th

Impagliazzo R, Paturi R. The complexity of
International Workshop on Parameterized and Exact Computation. 2009,
7585

[24] Turing A M. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
1937, S2—-42(1): 230-265

[25] Walsh T. SAT v CSP. In: Proceedings of the 6th International
Conference on Principles and Practice of Constraint Programming. 2000,
441-456

[26] Cook S A. The complexity of theorem-proving procedures. In:
Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing. 1971, 151-158

Ke XU received the BE, ME, and PhD degrees from
Beihang University, China in 1993, 1996, and 2000,
respectively. He is currently a professor of computer
science at Beihang University, China. His research
interests include phase transitions in computational complexity,

algorithm design, logic, graph neural networks, and crowd
intelligence.
Guangyan ZHOU received the PhD degree from
Beihang University, China in 2015. She is currently an
associate professor of mathematics at Beijing
Technology and Business University, China. Her
research interests include phase transitions in computational

complexity, combinatorial optimization, and probabilistic analysis.

The initial draft of the paper entitled “SAT Requires Exhaustive Search” was completed and released via arXiv in February 2023. During the

subsequent two-year period, the authors have engaged in in-depth discussions with a number of esteemed experts in related fields. In the past

year, they have actively shared their work with hundreds of experts around the world. As of March 2025, more than 30 experts have provided

highly positive feedback, including remarks like “fruly revolutionary” from Prof. Gregory Chaitin, the father of algorithmic information

theory, who proved Chaitin’s incompleteness theorem similar to Gdédel’s incompleteness theorem. In response to the comments and

suggestions from experts, the authors have redefined the foundational problem of computer science. Additionally, they have added an

extended abstract to more comprehensively elaborate on the motivation, conceptual framework, and techniques of this paper. After extensive

and thorough deliberations, Frontiers of Computer Science has decided to publish this paper. After obtaining consent from the authors and the

reviewers, comments from 7 experts are being published simultaneously, offering thought-provoking perspectives on the core ideas of this

paper from various angles.

Frontiers ofComputer Science |Issuc 12 | Volume 19 | December 2025 | 1912405-7

Ke XU et al.

Appendix A

Construction is all you need

SAT requires exhaustive search

——extended abstract of “SAT requires exhaustive search”

Our paper introduces a new framework for studying computational
hardness, which can be seen as an extension of Gddel’s framework
for proving the incompleteness theorem. Godel’s framework
demonstrates that a constructed self-referential proposition is
unprovable, which means that the reasoning based on syntax cannot
determine the semantics of this proposition. Within this new
framework, all aspects of computational hardness, including the P vs.
NP problem, should be reconsidered. This famous problem obscures
the surprising fact that we do not know any nontrivial result of
complexity lower bounds (e.g., a super-linear lower bound), but we
know barriers to obtaining such results. In many cases, barriers arise
simply because we are not on the right track, and sometimes the
problem itself is the biggest barrier. As the old saying goes, a
question well asked is half answered. Therefore, we must look back
at history and return to the origin to redefine the foundational
problem of computer science — —namely, identifying the right
question to ask when a given problem is already computable.

Computation is fundamentally a mechanical process of reasoning.
In other words, it can be viewed as mechanized mathematics. There
are two main lines of research on the limits of computation. Godel’s
results address the limits of reasoning within finite formal systems,
while Turing’s results explore the limits of mechanization (i.e.,
whether mechanical processes can be realized in the physical
universe). Computational time fundamentally relies on the reasoning
of concrete examples rather than the computability of abstract
problems. The P vs. NP problem is a natural extension of Turing’s
concept of computability. However, even if a problem is
uncomputable, each instance might still be solved quickly, though no
general (mechanical) method exists to handle all instances. In other
words, computability is unrelated to computational time. Therefore,
Turing’s framework of computability is not suitable for studying
computational hardness. This also explains why there are so many
barriers in current complexity theory studies: we might have taken
the wrong path from the very beginning. It is also worth noting that
Turing himself clearly recognized that reasoning, rather than
computability, is related to time. He once posed the profound
question: “Does time enter into ‘This proposition is difficult to
prove’?” (L. Wittgenstein, Lectures on the Foundations of
Mathematics, Cambridge, 1939: From the Notes of R.G. Bosanquet,
N. Malcolm, R. Rhees, and Y. Smythies. Harvester Press, 1976).

In fact, the Turing machine itself is an assumption about machines
(i.e., mechanized finite formal systems) that can be realized in the
physical universe. In essence, the Turing machine represents a
fundamental physical assumption, and Turing’s findings on
uncomputability signify the physical limits of mechanically solving
all instances of a problem. The computational hardness of concrete
examples arises from the limits of reasoning. It is unnecessary to
discuss the mechanical solving of these examples based on the
concept of Turing machines. This is because if the reasoning of
concrete examples requires a long time, then solving these examples
mechanically will also take a long time. We can also say that
computational hardness results are essentially mathematical
impossibility results of reasoning. Any mathematical impossibility
result cannot be proved without restrictions on the form of

mathematics. To derive such results, it is essential to make a
mathematical (rather than physical) assumption about reasoning.

The essence of computational hardness lies not in the distinction
between deterministic polynomial-time computation and non-
deterministic polynomial-time computation (i.e., P vs. NP), but in the
distinction between non-brute-force computation and brute-force
computation. This distinction essentially questions whether syntax
can replace semantics (i.e., whether the part can replace the whole
through reasoning). For CSPs, this question reduces to whether a
certain number of subproblems can replace the whole problem, based
on a mathematical assumption about the reasoning of CSPs. We then
construct self-referential CSPs and ultimately prove by contradiction
that a certain number of subproblems cannot replace the whole
problem for these CSPs. This is very similar to Godel’s study on
whether a finite set of true mathematical statements (i.e., axioms) can
replace an infinite set of all true mathematical statements through
reasoning. Therefore, our result can be considered an incompleteness
theorem for CSPs, primarily due to the gap between syntax and
semantics.

Godel’s proof and our proof address two different cases (i.e., first-
order logic and propositional logic, respectively). The essence of
both proofs (i.e., the use of self-reference) is the same, but there are
differences in constructing the self-referential object. Specifically,
this involves constructing an object such that negating it results in an
object equivalent to itself. In Godel’s work, the self-referential object
is a logical formula. In our work, the self-referential object is an
infinite set of satisfiable and unsatisfiable examples. These self-
referential examples necessitate brute-force computation because the
part cannot replace the whole for these examples. In other words,
reasoning based on syntax is ineffective, and only brute-force
computation based on semantics can solve these examples. It should
also be emphasized that our hardness results apply to finite formal
systems under a mathematical assumption. Turing machines, on the
other hand, are finite formal systems under a physical assumption.
Thus, while both are subsets of a larger set, they cannot be directly
compared. In other words, our work and current complexity theory
are two paths that extend different frameworks from the same
starting point in computer science. Specifically, non-brute-force
computation vs. brute-force computation is an extension of Gddel’s
framework, while P vs. NP is an extension of Turing’s framework.

Finally, we address the two main barriers in complexity theory.
The relativization barrier indicates that the diagonalization method
cannot separate P from NP. In our work, this method is applied to
constructed satisfiable and unsatisfiable examples, avoiding the
relativization barrier. Regarding the natural proof barrier, the
diagonalization method can circumvent it. Thus, using constructed
examples, we bypass both barriers. The fundamental reason is that
Godel’s framework (instead of Turing’s) is used to study
computational hardness. Many believe that complexity theory is
difficult because it deals with computational hardness. This is a
misunderstanding. Our work shows that extreme hardness (brute-
force computation) is easy to understand through the construction of
self-referential examples. In short, construction is all you need.

Frontiers of Computer Science | issuc 12 | Volume 19 | December 2025 | 1912405-8

Front. Comput. Sci., 2025, 19(12): 1912405

Appendix B

Comments on paper entitled: SAT requires exhaustive search

Bridging theory and practice in computational complexity and algorithm design

Shaowei CAI

Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

This paper provides a new way to understand the hardness of
computational problems. I find the idea of understanding the
hardness of a problem by constructing extremely hard instances is
very interesting, and to some extent can bridge the gap between
theory and practice in computational complexity and algorithm
design.

It has been widely acknowledged that there is a large discrepancy
between the theory and practice of algorithm design. For example,
while SAT is proven to be NP-complete, many SAT instances from
industries are solved efficiently by modern SAT solvers. This
discrepancy arises because complexity theory focuses on the worst-
case complexity of problems, while real-world SAT instances often
possess structural properties that allow for efficient resolution. For
SAT problems
verification tasks can be large (with millions of variables and

example, industrial derived from hardware
clauses) but are highly structured, containing hierarchical and
modular components. These structures are exploitable by SAT
solvers through techniques like conflict-driven clause learning
(CDCL), enabling them to find solutions or prove unsatisfiability
without exhaustively exploring the entire solution space.

The fundamental reason for this gap is that computational
complexity theory addresses the hardness of problems in general, not
specific instances. Previous theoretical works usually provide
negative complexity results without giving any concrete hard
instance. Complexity classes like NP-complete capture the worst-
case scenario. However, many real-world instances do not lie in the
difficult regions, and sometimes it is even hard to find a difficult
instance, as claimed in the hardness results in theory. In order to
solve problems, algorithms are implemented into programs and
eventually executed on computers. In this sense, constructive
approach, instead of existence theorems, could shed additional useful
insights on understanding the hardness of problems, and is helpful for
bridging the gap between theory and practice.

The RB model, as described in the paper, generates instances with

properties that make them difficult for algorithms to solve without
exhaustive search. These instances are designed to have a phase
transition where the probability of satisfiability changes abruptly. At
this critical point, instances are neither trivially satisfiable nor easily
proven to be unsatisfiable. They often have a balance between
constraint density and variable freedom that challenges both
systematic and stochastic search algorithms. Additionally, the
symmetry requirement in RB model instances means that variables
and their domains are structured in a way that prevents algorithms
from exploiting structures to guide the search. The frb100-40
instance remains an unsolved challenge even after 20 years. Despite
numerous attempts, no one has been able to solve it.

Empirically, many CSP instances generated from the RB model
have remained unsolved for years despite advances in algorithmic
techniques. These instances are constructed to avoid the structural
biases that algorithms typically exploit. The hardness of these
instances is not an anomaly, but a reflection of the problem’s
inherent complexity when certain parameters are chosen. To establish
complexity lower bounds, the authors rely on a single assumption
regarding the exact algorithms for solving CSPs — “We only need to
assume that this task is finished by dividing the original problem into
subproblems”. This should be true in algorithm design. As we know,
at least until now, all exact algorithms for CSPs are based on divide-
and-conquer style, such as backtracking methods.

This paper provides a constructive approach for understanding the
complexity of problems. This constructive approach bridges the gap
between theory and practice, as it provides concrete challenges for
algorithm designers to overcome. Moreover, insights gained from
analyzing these hard instances can inform the development of more
robust and generalizable algorithms. This interplay between theory
and practice is essential for advancing the field of computational
complexity and algorithm design. In essence, theory helps identify
barriers and opportunities, while practice refines and expands the
range of solvable problems through algorithmic innovation.

On the structure and complexity of computational problems

Yun FAN

School of Mathematice and Statistics, Central China Normal University, Wuhan 430079, China

The paper discusses a special type of CSP, named Model RB, which

has been proved to have an exact phase transition from satisfiability

Frontiers of Computer Science | Issuc 12 | Volume 19 | December 2025 | 1912405-9

Ke XU et al.

to unsatisfiability (K. Xu and W. Li. Exact phase transitions in
random constraint satisfaction problems, Journal of Artificial
Intelligence Research, 12(1): 93—103, 2000). Xu and Zhou explored
what happened in the phase transition point. Inspired by the Godel’s
self-referential proposition which is unprovable, they introduced the

9 <

so-called “‘self-unsatisfiable constraint”, “self-unsatisfiable variable”
and “self-unsatisfiable instance” (called “self-unsatisfiable formula”
in their paper). They find a way, called symmetry mapping, to
exchange self-unsatisfiable instances to the instances with unique
solution, and vise versa. Similarly to Goédel’s diagonal argument,
they proved by contradiction that any algorithm solving RB-problem
has at least exponential complexity, i.e., Theorem 3.2 and its
Corollary 3.3, which are really surprising results.

Computational problems take many various forms, for example,
algebraic, combinatorial, number-theoretic, etc., which vary greatly
from one to the other. Generally speaking, the richer the structure of
the problem is, the simpler the algorithm of the problem is. Because:
the structure would help us to reduce the solving of instances of the
problem to a small number of instances. For example, to solve
systems of linear equations of 7 variables, Gaussian elimination
reduce systems of linear equations to the systems of linear equations
which coefficient matrices have diagonal submatrices.

There are three situations.

The best situation is that by the reductions we can get an algorithm
of polynomial time to solve the problem (e.g., solving systems of
linear equations described as above).

The worst situation is that the problem is not reducible completely
so that we can solve it only by exhaustive search. Xu and Zhou say
this case is “extremely hard”. For example, the general decoding
problem (i.e., essentially speaking, given a subset and a point in a
finite metric space, find the point in the subset which is closest to the
given point) is extremely hard.

The situation in between is that, though the problem is reducible,
we do not find an algorithm of polynomial time to solve it. For
example, for the decoding problem of linear codes (i.e., in the
decoding problem mentioned above, further assume that the finite

SAT requires exhaustive search

metric space is a vector space and the given subset is a linear
subspace), though we can use the linear structure to reduce the
question to a smaller question about the quotient space, we still have
no algorithm of polynomial time to solve it.

As Xu and Zhou said, the situation in between appears often
difficult to deal with, however, the extremely hard situation is
relatively not so difficult to deal with. Their work means that, though
the problem RB can be reducible (e.g., reduce the RB-problem with
n variables to the RB-problem with n— 1 variables), but it does
contain many hard instances which present some wonderful natures,
so that the authors of the paper can spot the contradiction in their
proof.

A big contribution of their work is that they find a new way to
study the computation hardness, i.e., construct a subproblem
containing the peculiar hard instances, and use it to estimate the
complexity of the problem. Their work implies seemingly that such
instances are usually appeared in the transitional areas. Thus their
work suggested an insightful research point of view: if a problem has
an exact phase transition similar to RB-problem, then it maybe
interesting to explore what happened in the zone of the phase
transition.

A very original innovation of the paper of Xu and Zhou is that they
regard the computational problem they are studying as a finite formal
system, just like the finite formal systems Godel worked, and use the
Godel’s diagonal argument, and some thing like that, to consider the
hardness of the computational problem. This ideology is different
from the common ideas in current complexity theory. To be more
explicit, finite formal systems may be not algorithms, but algorithms
are finite formal systems (mechanized finite formal systems). As Xu
and Zhou said: “our work and current complexity theory are two
paths that extend different frameworks from the same starting point
in computer science.” Within the new framework, modifying the
Godel’s diagonal argument, they are successful in proving by
contradiction that Model RB cannot be solved in O(d“"") time for
O<c<1.

The power of symmetry in proving lower bounds

Zhiguo FU

School of Information Science and Technology, Northeast Normal University, Changchun 130117, China

This paper offers a new perspective on computational complexity by
comparing Godel’s and Turing’s results on the limits of computation.
Specifically, the authors propose a novel approach, viewing
computational complexity as the limits of reasoning within bounded
time, a perspective that cleverly connects with Godel’s work on
proving the incompleteness theorem.

Innovatively, this paper adopts a constructive approach to studying
the hardness of problems. The core of computational complexity lies
in understanding and proving hardness. However, it is difficult to

determine the complexity lower bounds, and we know very little how

to characterize hardness effectively. And we are lack of effective
methods to generate genuinely hard instances. The concept of NP-
completeness only characterizes relative hardness by indicating that
some problems may be harder than others, without explaining the
underlying reasons. The famous physicist Richard Feynman’s quote,
“What I cannot create, I do not understand,” aptly captures this
dilemma. This research addresses the challenge by adopting a
constructive method. The authors utilize the phase transition
phenomenon to construct random Constraint Satisfaction Problem

(CSP) instances based on a well-known CSP model, namely Model

Frontiers ofComputer Science |Issuc 12 | Volume 19 | December 2025 | 1912405-10

Front. Comput. Sci., 2025, 19(12): 1912405

RB. Their proof shows that the extreme hardness of the constructed
instances comes from symmetry.

In detail, I think an inherent difficulty in proving hardness lies in
the fact that our goal is to demonstrate that an object possesses a
certain property related to hardness. However, we lack an efficient
method for analyzing this property (i.e., determining whether a given
object has this property). If such a method existed, it would
contradict the hardness of the object we aim to prove. In this paper,
the authors cleverly utilize symmetry to overcome this difficulty,
which, as far as I can see, is the most significant technical innovation
of this work. Specifically, the authors first use symmetry to construct
random CSP instances. Subsequently, they demonstrate that both

A new direction for computational complexity

Angsheng LI

satisfiable and unsatisfiable instances can be generated at the phase
transition point. Finally, by introducing the symmetry mapping, they
prove that these satisfiable and unsatisfiable instances possess a
certain symmetry, making them difficult to distinguish. I believe that
this approach not only proves the hardness, but also helps to
understand it intuitively. In addition, I find the assumption about
CSPs made in this paper to be reasonable and acceptable.

In summary, this paper not only offers a new perspective on
computational complexity but also demonstrates the power of
construction and symmetry in proving complexity lower bounds. I
believe that it contributes to a fresh understanding of computational
hardness and paves the way for future research in this area.

School of Computer Science and Engineering, Beihang University, Beijing 100191, China

This paper proposed a completely new approach to understanding the
concept of “hardness” in designing algorithms.

A computational problem requires us to find a solution by
reasoning based on the relationships of the data points of a problem.
The solutions of a computational problem are embedded in the space
of the data points of the computational problem. Finding a solution of
a computational problem is to eliminate the uncertainty that blocks
the way to finding the solution.

Apparently, there are uncertainties in finding a solution of a
computational problem. Once the uncertainty that is essential for
finding a solution of a computational problem is eliminated, a
solution of the computational problem shows up.

When Juris Hartmanis defined the metric of computational
complexity, he initially tried to propose an information measure of
the hardness of a problem. That is, the hardness of a computational
problem is the amount of uncertainty that must be eliminated for
finding a solution of the problem. Hartmanis examined the metric of
Shannon entropy. Due to the fact that Shannon’s entropy measures
only the amount of uncertainty that is embedded in a random
variable, which is invalid for measuring the amount of uncertainty
that is embedded in finding a solution of a computational problem.
For this reason, Harmanis defined the time complexity and space
complexity simply based on the execution of a Turing machine.

When I visited Juris Hartmanis in 2008, Juris suggested me to give
a new definition of information, that is, the “information” in
“information processing” in computer science, instead of the
“information” in end-to-end communication. I spent 8 years working
on this project, eventually published my theory paper on structural
information theory in 2016. Since 2016, the principles of structural
information theory have experienced the first wave application
investigations in a wide range of areas such as identification of
chromatin topologically associating domains in cells, classification of
cancer cells, network security, ranking

algorithms, image

identification, game design, natural language understanding, neural
network learning etc. Experiments verify that structural information
theory provides the principles for learning and intelligent strategies
with remarkable advances in both precision and efficiency. From
2016 to 2024, I established the information science principles of
artificial intelligence, providing the first mathematical principle of
Al. The research so far explores that “information” is a scientific
concept with deep theory and wide applications, instead of merely a
communication concept as that in Shannon information theory, and
that “information” is the key to open the information world.

The paper entitled: SAT Requires Exhaustive Search, by Ke Xu
and Guangyan Zhou, persists the same idea in understanding the
“hardness” of a computational problem. It shows that:

1. algorithm design is based on reasoning;

2. reasoning is based on relationships;

3. if there is no relationship among the data points, then there is
no the basis for reasoning, and hence, there is no cues for
designing algorithms;

4. if there is no cue for designing algorithms, meaning that there
is no cue to reduce uncertainty, then the only way is to do
exhaustive search.

The paper proposed a construction of hard instances based on a
random model of constraint satisfaction problem, namely model RB,
proposed more than 20 years ago.

The authors proved the hardness of the constructed instances by
developing an approach similar to the proof of the incompleteness
theorem of Godel in 1931.

The paper shows:

1. extremely hard instances can be constructed;

2. extremely hard instances can only be constructed, while
“natural” instances in everyday life may not be too hard;

3. extremely hard instances are easy to prove that they are hard.

Frontiers of Computer Science | issuc 12 | Volume 19 | December 2025 | 1912405-11

Ke XU et al.

The paper pioneered a white box approach to understanding the
hardness of computational problems, leading to a new direction for

On the gap between syntax and semantics

Wanwei LIU

SAT requires exhaustive search

computational complexity.

College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China

The theory of computability and computational complexity is
probably the most “clegant” part of theoretical computer science.
Many difficult but fundamental problems (including P = NP) just
belong to this subject. So far, all efforts to prove “P = NP” and/or
P C NP have failed. Although we cannot fully understand the most
essential cause that makes this problem difficult, some thought-
provoking results have still been obtained. In 1975, Baker, Gill and
Solovay showed that one can construct both two languages A and B
making P4 =NP* and P® C NP?. Consequently, P and NP
cannot be separated by diagonalization, meanwhile P = NP cannot
be proven merely by analogy (or, simulation).

In this paper, the authors present a new approach to understanding
the essence of “hardness” of computing — they present a hard case
construction approach, based on a special random model of
constraint satisfaction problem (CSP, for short), called RB, which
is proposed by Xu and Li in 2000 or so. For CSPs, non-brute-force
computation vs. brute-force computation (instead of P vs. NP) is
reduced to “whether the whole problem can be replaced by a certain
number of subproblems”.

By constructing self-referential examples of CSP, they show that

“Model RB (with n variables and domain size d) cannot be solved
in O(d") time for any constant 0<c<1”,

and as the corollary, they have
“SAT cannot be solved in time O(2¢™) for any 0<c<1”.

This is definitely a landmark in computer science and mathematics, if
the conclusion is correct.

From the perspective of logic, I was deeply attracted by the
following insight pointed out in Xu and Zhou’s paper:

“... However, even if a problem is uncomputable, each instance
might still be solved quickly, though no general (mechanical)
method exists to handle all instances ...”

—it reminds me the relation between syntax and semantics! As
shown in Gddel’s theorem of incompleteness: any first order system
containing arithmetic axioms cannot be (completely) axiomatized by
preserving soundness. Note that this great theorem never denies the
existence of the system (or simply, formula set) that precisely
containing FOL formulas which are arithmetically true. One may just
“collect” them into a set as axioms, yet such system becomes
“meaningless”, because one have no way to decide whether a given
formula belongs to it or not. Another example is, suppose, we have
some function f:N —{0,1}, namely, f is the characteristic
function of some subset of natural numbers, then can we always
describe the mapping rule of f using some given “standard
operations”?. Definitely not! In addition, we even know that the
measure of such “describable functions” is 0, when taking all such
functions into account. The reason is, each such function corresponds
to a sequence of description with finite length. This might be the
“gap” between syntax and semantics.
Then, turn to computation complexity, the authors point that

13

. The essence of computational hardness lies not in the
distinction between deterministic polynomial computation and
non-deterministic polynomial computation (i.e., P vs. NP), but in
the contradiction between non-brute-force computation and
brute-force computation. This distinction essentially questions
whether syntax can replace semantics ...”

In my opinion, the instances created in Xu and Zhou’s paper can be
seen as twin instances: although they share the same syntax, they
differ in their semantics, and semantical feature cannot be captured
by their (even, have no) syntactical counterpart.

Then, from Godel’s theorem (of incompleteness) to Tarski’s

LTS

(undefinability) theorem, then to Turing’s “uncomputability”, maybe
the gap between syntax and semantics is the “manipulator” hidden
behind them. Xu and Zhou’s paper makes me notice this important

issue that has once been ignored.

Proving computational hardness: uncertainty can be determined

Bin WANG

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Computational complexity theory is a fundamental area of computer
science, extensively studied by researchers in mathematics, computer
science, and statistical physics. The hardness of a problem stems
from the uncertainty of its solvability, thus proving hardness equates

to proving its uncertainty.

It is well known that the hardest instances of NP-complete
problems are concentrated in the sharp transition region, where
instances are either satisfiable or unsatisfiable, exhibiting the highest
uncertainty. Although random 3-SAT can generate instances with

uncertain satisfiability, this uncertainty has not been mathematically

Frontiers of Computer Science | Issuc 12 | Volume 19 | December 2025 | 1912405-12

Front. Comput. Sci., 2025, 19(12): 1912405

proven, lacking the foundation for a formal proof of hardness.
Meanwhile, easy problems like 2-SAT and XORSAT exhibit sharp
threshold results but are not suitable for hardness proofs. The
fundamental reason behind this is that the correlation within the
solution space (i.e., the set of all possible assignments) is a crucial
factor influencing the complexity of the problem. Put simply, the
more independent (less correlated) the solution space is, the harder
the problem becomes. The assignments of 3-SAT are highly
correlated, often agreeing on about half of the variables. This
correlation causes the second moment to grow exponentially
compared to the square of its expectation, leading to the failure of the
second-moment method.

In contrast, the uncertainty of whether the RB instances are
satisfiable or unsatisfiable can be rigorously proved. From Lemma
2.2 and Corollary 2.3 in Xu and Zhou’s paper, both the probability
that a random instance I is unsatisfiable and the probability that /
has exactly one solution can be bounded below by a positive
constant. That is to say, the status of I is determined to be uncertain.
This property makes RB instances a viable foundation for
establishing hardness results. From a mathematical perspective,
proving the uncertainty of the RB model is significantly easier than
that of 3-SAT. I think the key reason is that in the RB model, the
domain size grows with the number of variables, changing the
structure of the solution space. Specifically, this significantly
weakens the correlation between assignments, making the solution
space appear nearly independent. This independence enables the

success of the second-moment method. Note that for any two

. . Pr(o,7 satisfy I)
assignments 0 and 7, it holds that Sz gishies 7)-Prir satshes) > 1,

Furthermore, 0,7 are independent if and only if the equality holds
for the above inequality. As shown by the authors, the RB model has

2 2

% =~ 1 in the satisfiable region. Since Z(rrprg’)i s]atisfy = I,
E[X? ’

and 1, then

Yo7 Pr(o satisfies I)-Pr(r satisfies 1) =
o7 Pr(o,t satisfy 1) ~1 . .
o Pric satisfies 1)-Pr(r satsfies 1) ~ - Thus, there is strong evidence

Different phase transitions of random CSPs

Pan ZHANG

that solution space of the RB model exhibits near-independence.
Furthermore, the dominant assignment pairs contributing to E[X?]
are those with the largest distance (i.e., agreeing on no variables),
strengthening this independence. This property also ensures that the
slight change made by the symmetry mapping in Xu and Zhou’s
paper will not affect the remaining solution space. Precisely due to
this property, Xu and Zhou can use the classical diagonalization
method to prove, by contradiction, that exhaustive search is
indispensable for eliminating uncertainty.

From a computational perspective, solving a combinatorial
problem fundamentally involves compressing the solution space, i.e.,
efficiently filtering feasible solutions from a vast set of candidates. In
statistical terms, this is analogous to dimensionality reduction.
Interestingly, this paper demonstrates that for CSP and SAT
problems, it is possible to construct extremely hard instances that are
incompressible. The independence of the solution space prevents any
method from significantly reducing the search space, ultimately
leading to the incompressibility of the instances.

I find the mathematical derivations in Xu and Zhou’s paper to be
Additionally, this paper
assumption to its reasoning, which I find both necessary and well-

correct. introduces a mathematical
justified. The challenge of proving impossibility results has a long
history in mathematics. For example, it took over two thousand years
to prove the impossibility of trisecting an arbitrary angle using only a
straightedge and compass. Such impossibility results are inherently
conditional —they hold under specific mathematical frameworks
rather than in an unrestricted mathematical setting. The authors argue
that the

assumption. This perspective seems reasonable to me, as the Turing

Turing machine represents a fundamental physical
machine, in my view, does not impose any restrictions on
mathematics. Incompressibility results are a type of mathematical
impossibility result, and proving them requires introducing an
assumption that restricts the mathematical framework. This necessity
aligns with the historical approach to proving impossibility results.

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

The phase transitions in random constraint satisfaction problems
(CSPs), such as the K-SAT problem and the coloring problem, have
been extensively studied in statistical physics as models of spin glass
systems, which exhibit disorder and frustration. Research in
statistical physics has focused on the structure of the solution space,
linking it to average-case computational complexity and the phase
transition between the “almost satisfiable phase” and the “almost
unsatisfiable phase.” The hardest instances typically lie near this
phase transition.

Typical problems in spin-glass theory involve a fixed-length
domain size. For example, in K-SAT, each variable has only two
possible states. However, Model RB, studied by Xu and Zhou, differs
significantly from standard random CSPs like k-SAT. In Model RB,

the domain size d =n® grows polynomially with the number of
variables n. This growth leads to distinct properties compared to
traditional CSPs studied in statistical physics.

1 Solution space correlations and domain size

Model RB’s large domain size means that two assignments can be
very different, with a large Hamming distance, and most pairs of
assignments are nearly independent. This results in a solution space
dominated by isolated configurations. In contrast, k-SAT problems,
with their fixed-length Boolean variables, exhibit strong local
correlations due to variable overlap in clauses. Near the phase
transition, solutions form clusters with small Hamming distances,
separated by energy or entropy barriers.

Frontiers of Computer Science | issuc 12 | Volume 19 | December 2025 | 1912405-13

Ke XU et al.

2 Critical behavior and phase transition sharpness

Model RB has an exact and mathematically tractable phase transition
with a sharp threshold 7., determined by methods like the second-
moment method. Instances at this threshold are either satisfiable or
unsatisfiable due to violated constraints. In k-SAT, while a sharp
satisfiability threshold exists, the critical region in the hard-to-solve
phase is characterized by a proliferation of frozen clusters, where a
finite fraction of variables share a partial configuration. This aspect
remains challenging for rigorous mathematical methods.

3 Algorithmic hardness and energy landscapes

The exponential number of independent variables in Model RB may
create a flat ground-state-energy landscape with exponentially many
local minima, forcing algorithms to perform exhaustive searches

SAT requires exhaustive search

rather than relying on local heuristics. This is analogous to the frozen
phase in k-SAT, where solution clusters are hard to find without
directly accessing the frozen variables. Additionally, Model RB
avoids trivial unsatisfiability by balancing constraint density and
domain growth, unlike k-SAT, which relies solely on clause density
tuning.

In conclusion, Model RB’s polynomial domain size growth makes
its phase transition distinct from traditional random CSPs like k-
SAT. These properties make Model RB a unique benchmark for
rigorously studying computational limits. The interplay between
Model RB and other CSPs enriches both computational complexity
theory and statistical physics, highlighting its value as a bridge

between these disciplines.

Frontiers of Computer Science | Issuc 12 | Volume 19 | December 2025 | 1912405-14

