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Abstract

,

In this paper, we identify the distinction between non-brute-force computation and brute-force computation as the most fundamental problem in
computer  science.  Subsequently,  we  prove,  by  the  diagonalization  method,  that  constructed  self-referential  CSPs  cannot  be  solved  by  non-
brute-force  computation,  which  is  stronger  than  P   NP.  This  constructive  method  for  proving  impossibility  results  is  very  different  (and
missing)  from existing  approaches  in  computational  complexity  theory,  but  aligns  with  Gödel’s  technique  for  proving  logical  impossibility.
Just as Gödel showed that proving formal unprovability is feasible in mathematics, our results show that proving computational hardness is not
hard in mathematics. Specifically, proving lower bounds for many problems, such as 3-SAT, can be challenging because these problems have
various  effective  strategies  available  to  avoid  exhaustive  search.  However,  for  self-referential  examples  that  are  extremely  hard,  exhaustive
search  becomes  unavoidable,  making  its  necessity  easier  to  prove.  Consequently,  it  renders  the  separation  between  non-brute-force
computation and brute-force computation much simpler than that between P and NP. Finally, our results are akin to Gödel’s incompleteness
theorem, as they reveal the limits of reasoning and highlight the intrinsic distinction between syntax and semantics.
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■ 1  Introduction

d n

n = 100

d = 40

Model RB is a random constraint satisfaction problem (CSP) model
that  was  proposed  by  Xu  and  Li  [1]  in  2000,  which  could  also  be
encoded  to  well-known  NP-complete  problems  like  SAT  and
CLIQUE.  The  purpose  of  this  model  was  to  address  the  issue  of
trivial  unsatisfiability  that  was  prevalent  in  previous  random  CSP
models. One of the key features of Model RB is that its domain size
 grows with the number of variables  . Additionally, Model RB has

been  proved  to  exhibit  exact  phase  transitions  from  satisfiability  to
unsatisfiability,  making it  a useful tool for analyzing and evaluating
the performance of algorithms. Over the last two decades, Model RB
has  been  extensively  researched  from  multiple  perspectives,  as
evidenced by various studies (e.g., [2–21]). Moreover, this model has
gained  significant  popularity  and  widespread  use  in  renowned
international  algorithm  competitions.  A  random  instance  of  Model
RB  with  a  planted  solution  named  frb100-40,  where    and

,  has  remained elusive  since  it  was  made available  online  in
2005  as  a  20-year  challenge  for  algorithms1).  Despite  numerous
attempts,  no one has been able to solve it  thus far.  In summary,  the
results  suggest  that  Model  RB  possesses  nice  mathematical

properties that  can be easily derived.  In contrast  to its  mathematical
tractability,  the  random  instances  of  this  model,  particularly  those
generated  in  the  phase  transition  region,  present  a  significant
challenge for various algorithms, proving to be extremely difficult to
solve.
As shown in the proof of Gödel’s incompleteness theorem [22], the

constructive  approach  plays  an  indispensable  role  in  revealing  the
fundamental  limitations  of  finite  formal  systems.  An  algorithm  is
essentially a mechanized finite formal system. In this paper, we will
study  the  limitations  of  algorithms  based  on  the  constructive
approach. Specifically, we will explore whether non-exhaustive (non-
brute-force)  algorithms  can  always  replace  exhaustive  (brute-force)
ones,  or  if  some  computable  problems  inherently  lack  such
alternatives.  The  Strong  Exponential  Time  Hypothesis  [23]
conjectures that there is no non-brute-force algorithm for SAT. This
problem  is  very  similar  to  the  foundational  problem  resolved  by
Gödel’s  incompleteness  theorem,  originally  proposed  by  David
Hilbert  nearly  a  century  ago:  whether  a  finite  formal  system  can
always  replace  a  branch  of  mathematics  (e.g.,  arithmetic)  that
contains  infinitely  many  true  mathematical  statements.  These  two
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1) See tinyurl.com/2p53xbd7 website.
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T

problems raise essentially the same deep philosophical question: can
the part always replace the whole within the limits of reasoning? This
inquiry  concerns  the  limits  of  human  knowledge —a  subject
extensively explored by many great philosophers (e.g.,  Laozi,  Zeno,
Socrates,  Descartes,  Kant,  and  Wittgenstein).  Therefore,  the  most
fundamental  problem  in  computer  science  is  non-brute-force
computation vs. brute-force computation, rather than P vs. NP. From
a  mathematical  perspective,  the  distinction  between  non-brute-force
computation,  which  takes    time  (where    is  a  constant),
and  brute-force  computation,  which  takes    time,  seems  more
natural  and  intuitive  compared  to  that  between  P  and  NP.  From  a
practical  standpoint,  the  framework  of  non-brute-force  computation
vs.  brute-force  computation  is  also  broader  and  more  universally
applicable than that of P vs. NP. For instance, the P vs. NP paradigm
does  not  apply  to  problems  where  brute-force  algorithms  run  in
polynomial time or those that lie outside NP. However, even in such
cases,  we  can  still  explore  the  possibility  of  developing  non-brute-
force  algorithms.  Finally,  from  a  historical  perspective,  non-brute-
force  computation  vs.  brute-force  computation  extends  Gödel’s
framework, which unveils the limits of mathematics. Similarly, P vs.
NP  builds  on  Turing’s  framework,  shedding  light  on  the  limits  of
machines.  The  limits  of  mathematics  are  more  fundamental  than
those  of  machines,  as  anything  mathematics  cannot  achieve  is  also
beyond the reach of machines.
The  advantages  of  Model  RB  enable  us  to  choose  specific

threshold points at which instances with a symmetry requirement are
on  the  edge  of  being  satisfiable  and  unsatisfiable.  In  fact,  we  will
show  that  there  exist  instances  at  exactly  the  same  point  which  are
either  satisfiable  with  exactly  one  solution  or  unsatisfiable  but  only
fail  on  one  constraint.  The  satisfiability  of  such  instances  can  be
flipped under a special symmetry mapping. As a result,  they form a
fixed  point  set  under  this  mapping,  allowing  us  to  create  the  most
indistinguishable  examples  (self-referential  examples)  which  are  a
source  of  computational  hardness.  Based on the  symmetry  mapping
and  driven  by  the  famous  method  of  diagonalization  and  self-
reference,  we  show  that  unless  exhaustive  search  is  executed,  the
satisfiability  of  a  certain  constraint  (thus  the  whole  instance)  is
possible to be changed, while the subproblems of the whole instance
remain  unchanged.  Therefore,  whether  the  whole  instance  is
satisfiable  or  unsatisfiable  cannot  be  distinguished  without
exhaustive  search.  In  summary,  if  we  can  construct  the  most
indistinguishable  examples  with  exactly  the  same  method  and  the
same parameter values (a task that is both rare and challenging), then
it is not hard to understand and prove why they are extremely hard to
solve. 

■ 2  Model RB
IA random instance   of Model RB consists of the following:

X = {x1, ..., xn} xi

Di |Di| = d

d = nα i = 1, ...,n α > 0

●  A  set  of  variables  :  Each  variable    takes
values  from its  domain  ,  and the  domain size  is  ,
where   for  , and   is a constant.

C = {C1, ...,Cm} m = rn lnd

r > 0 i = 1, ...,m

●  A  set  of  constraints    ( ,  where
  is  a  constant):  for  each  ,  constraint

Ci = (Xi,Ri) Xi = (xi1 , xi2 , ..., xik ) k ⩾ 2

k

X Ri

Di1 ×Di2 × · · ·×Dik |Ri| = (1− p)dk

0 < p < 1

.   (  is a constant) is a
sequence of   distinct  variables  chosen uniformly at  random
without repetition from  .   is the permitted set of tuples of
values  which  are  selected  uniformly  without  repetition  from
the  subsets  of  ,  and 
where   is a constant.

m

R

(1− p)dk

Ri Ci i = 1,2, ...,m

k−1 Xi R

k = 2 D1 = D2 = {1,2,3,4}

R = {(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)}

D1

f (1) = 3, f (2) = 1, f (3) = 4, f (4) = 2

{(3,1), (3,2), (1,1), (1,2), (4,3), (4,4), (2,3), (2,4)}

Ri(i = 1, ...,m)

In this paper, we have a symmetry requirement of the permitted set
of each constraint, and the   permitted sets will be generated in the
following  way.  Initially,  we  generate  a  symmetry  set    which
contains   tuples of values, then generate each permitted set
  of  the  constraint    ( )  by  running  random

permutations  of  domains  of    variables  in    based  on  .  For
example,  if   and the  domains  are  ,  then

  is  a
symmetry  set.  If  we  run  a  random  permutation  of  ,  e.g.,

,  then  we get  a  permitted  set
.  Through  this

method  all    are  isomorphic  and  every  domain  value
of the variables shares the same properties.

Ci = (Xi,Ri)

σ ∈ D1×D2× · · ·×Dn Xi

Ri σ

I

Pr[I is SAT] I

A constraint   is said to be satisfied by an assignment
  if  the  values  assigned  to    are  in  the  set

.  An  assignment    is  called  a  solution  if  it  satisfies  all  the
constraints.   is called satisfiable if there exists a solution, and called
unsatisfiable if there is no solution. It has been proved that Model RB
not  only  avoids  the  trivial  asymptotic  behavior  but  also  has  exact
phase transitions from satisfiability to unsatisfiability. Indeed, denote

 the probability that a random instance   of Model RB
is satisfiable, then

rcr =
1

− ln(1−p)
α > 1/k 0 < p < 1

k, p k ⩾ 1/(1− p)

Theorem  2.1  ([1]).  Let  .  If  ,    are
two constants and   satisfy the inequality  , then
 

lim
n→∞

Pr[I is S AT ] = 1 if r < rcr,

lim
n→∞

Pr[I is S AT ] = 0 if r > rcr.

r = rcr +
δ

n lnd
δ = ln2

− ln(1−p)

In  the  following  we  will  present  some  properties  of  Model  RB
which are important to prove our main theorems in the next section.
From  here  on  we  tacitly  take  ,  where  ,
and take
 

α>max

1, inf{α : ω < 0},−2

(
100

99

)2
ln(1− p)

k
,
100ln(1− p)

k ln(1−
p

3
)

 ,

(2.1)
ω = 1+α(1− rcr pk) ω = 1+

α
(
1+

pk

ln(1−p)

)
,

pk+ ln(1− p) > 0 p ∈ (0,1)

k ⩾ 1
1−p

α > 0

ω < 0

where  .  In  fact  note  that 
  and  a  simple  calculation  yields  that

  for  all    under  the  condition  that
.  Thus  it  is  possible  to  take    large  enough  such  that

.
First,  we  bound  the  probability  that  a  random  RB  instance  is

satisfiable.

I n

rn lnd

Lemma 2.2 Let    be  a  random CSP instance  of  Model  RB with 
variables and   constraints. Then
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1

3
⩽ Pr(I is S AT ) ⩽

1

2
.

X IProof Let   be the number of solutions of  , then
 

Pr(X > 0) ⩽ E[X] = dn(1− p)rn lnd
=

1

2
. (2.2)

As shown in [1],
 

E[X2]=

n∑

S=0

dn

(
n

S

)
(d−1)n−S

(1−p)

(
S
k

)

(
n
k

) +(1−p)2

1−

(
S
k

)

(
n
k

)




rn lnd

= E[X]2

(
1+O

(
1

n

)) n∑

S=0

F(S ),

(2.3)

F(S ) =
(

n
S

) (
1− 1

d

)n−S (
1
d

)S [
1+

p

1−p
sk

]rn lnd
S = ns

α > 1

S = 0 S = n

where  , and   is
the number of variables for which an assignment pair take the same
values.  Note  that  ,  using  an  argument  similar  to  that  in  [1,7],
we  obtain  that  only  the  terms  near    and    are  not
negligible, and
 

E[X2]

E[X]2
⩽ 1+

1

E[X]
+o(1) = 3+o(1). (2.4)

Indeed, asymptotic calculations show that
 

F(0) = 1−o(1),F(i) = (1+o(1))ni(1−α), ...,

F(n− i) = (1+o(1))exp{i(lnn+ lnd− pkr lnd)}/E[X],

F(n) = 1/E[X],

i = 1,2, ... exp{i(lnn+ lnd−

pkr lnd)} = niω+o(1) α > 1,ω < 0

F(0) F(n)

where    is  an  integer.  Note  that 
 and   are constants, thus the upper

bound of (2.4) comes from   and  .
Pr(X > 0) ⩾ E[X]2/

E[X2] ⩾ 1
3

Using  the  Cauchy  inequality,  we  get 
. 　　　　　　　　　　　　　　　　　　　　　　□

I

As  an  immediate  consequence  of  Lemma  2.2  we  obtain  a  lower
bound of the probability that   has exactly one solution.

I n

rn lnd I

1/6

Corollary 2.3 Let   be a random CSP instance of Model RB with 
variables  and    constraints.  Then  the  probability  that    has
exactly one solution is at least  .

ρ1 I

ρ⩾2 I

Proof Let   be the probability that   has exactly one solution, and
 be  the  probability  that    has  at  least  two  solutions.  Then  from

Lemma 2.2, we have
 

E[X] =
1

2
⩾ ρ1+2ρ⩾2,

Pr(X > 0) = ρ1+ρ⩾2 ⩾
1

3
.

ρ1 ⩾ 1/6Therefore  .　　　　　　　　　　　　　　　　　　□

Next  we  show  that  if  a  random  instance  is  unsatisfiable,  then
w.h.p.2)  it  fails  at  only  one  constraint.  We  introduce  the  following
definitions.

I C

C I x

C x I

I

Definition  2.1 Let    be  a  CSP instance.  A  constraint    is  called  a
self-unsatisfiable constraint if there exists an assignment under which
 is the only unsatisfied constraint in  . If variable   is contained in
, then   is called a self-unsatisfiable variable. If    is unsatisfiable

and every variable  is  a  self-unsatisfiable  variable,  then    is  called a
self-unsatisfiable formula.

I n

rn lnd I I

Lemma 2.4 Let    be  a  random CSP instance  of  Model  RB with 
variables and   constraints. If   is unsatisfiable, then w.h.p.   is
a self-unsatisfiable formula.

C I

C N

Proof  First  we  show  that  for  any  constraint    of  ,  with  positive
probability  there  exists  an  assignment  which satisfies  all  constraints
except  . In fact let   be the number of such assignments, then
 

E[N] = dn(1− p)rn lnd−1 p. (2.5)

Using a similar argument as in [1], we have
 

E[N2]=

n∑

S=0

dn

(
n

S

)
(d−1)n−S

(1−p)

(
S
k

)

(
n
k

) +(1−p)2

1−

(
S
k

)

(
n
k

)




rn lnd−1

·

p

(
S
k

)

(
n
k

) + p2(1−

(
S
k

)

(
n
k

) )

 .

Hence, (2.3),(2.4) and (2.5) ensure that
 

E[N2]

E[N]2
=

E[X2]

E[X]2
·

1+
1−p

p
sk

1+
p

1−p
sk
⩽

1

p

E[X2]

E[X]2
⩽

3

p
.

Pr(N > 0) ⩾
E[N]2

E[N2]
⩾

p

3
C

p

3

Then  . Therefore the probability that   is a

self-unsatisfiable constraint is at least  .
rn lnd

x ∈ X rk lnd

Next, since the number of constraints is  , the average degree
of each variable   is  . By the Chernoff Bound,
 

Pr

[
Deg(x) ⩽

1

100
rk lnd

]
⩽ e−(99/100)2rk lnd/2

= n−(99/100)2rkα/2,

(x) x

1− (99/100)2rkα/2 < 0

where  Deg   denotes  the  degree  of  variable  .  From  the
requirement (2.1) we know that  , thus
 

nPr

[
Deg(x) ⩽

1

100
rk lnd

]
⩽ o(1). (2.6)

1
100

rk lndTherefore, almost surely all variables have degree at least  .
1

100
rk lnd

p

3 x
(
1−

p

3

) 1
100

rk lnd

Furthermore, note that each variable appears in at least 
constraints  and  the  probability  that  each  constraint  appears  to  be  a
self-unsatisfiable constraint is  at  least  ,  thus the probability that 

is not a self-unsatisfiable variable is at most  .

1+ 1
100

rkα ln(1− p/3) < 0Note  that  (2.1)  entails  that  ,  therefore
the  probability  that  there  exists  a  variable  which  is  not  self-
unsatisfiable is at most
 

n

(
1−

p

3

) 1
100

rk lnd

= n1+ 1
100

rkα ln(1−p/3)
= o(1). (2.7)

Thus w.h.p. all variables are self-unsatisfiable variables. 　　　　□
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d = βn

β > 1

E[X2]/E[X]2 F(0) = 1−o(1)

F(n) = 1/E[X]

F(i) = Θ
(
( n

d
)i
)

Remark 2.1 We claim that Lemmas 2.2 and 2.4 hold for any domain
size  greater  than  polynomial.  Take  exponential  domain  size 
(where    is  a  constant)  for  example,  similarly,  the  dominant
contributions  of    come  from    and

,  and  asymptotic  calculations  show  that
 and

 

F(n− i) = (1+o(1))
1

E[X]
exp

{
i lnn+ i

(
1+

pk

ln(1− p)

)
lnd

}

i 1+
pk

ln(1−p)
< 0

d = βn

are  negligible  for  small  integer  ,  since  .  Moreover,
probability  analysis  holds  more easily  in  the proof  of  Lemma 2.4 if

 ((2.6) and (2.7)).
Next we define a symmetry mapping of a constraint which changes

its permitted set slightly.

I

k = 2 C = (X,R) I X = (x1, x2)

C R

u1,u2 ∈ D1 u1 , u2 v1,v2 ∈ D2 v1 , v2

(u1,v1), (u2,v2) ∈ R (u1,v2), (u2,v1) < R

u1 u2

Definition  2.2  Consider  a  random  instance    of  Model  RB  with
. Assume that   is a constraint of   and  ,

then  a  symmetry  mapping  of    is  to  change    by  choosing
  ( ),    ( ),  where

 and  , and then exchanging
 with   (see Fig. 1).
With  the  above  properties  of  Model  RB,  we  obtain  the  following

interesting results.

Theorem  2.5  There  exists  an  infinite  set  of  satisfiable  and
unsatisfiable instances of Model RB such that this set is a fixed point
under the symmetry mapping of changing satisfiability.

I n rn lndProof Let   be the set of RB instances with   variables and 
constraints,  where  each  instance  either  has  a  unique  solution  or  has
no solution.

I ∈ I σ

1/6

C′ C′ = (X′,R′),

X′ = (x, x1),σ(x) = u,σ(x1) = v, D,D1 x

x1

Assume  that    has  exactly  one  solution  ,  which  happens
with  probability  at  least    from  Corollary  2.3.  For  an  arbitrary
constraint  ,  assume  without  loss  that 

 and   are the domains of 
and  ,  respectively.  By  the  symmetry  requirement,  there  exist

u′ ∈ D,v′ ∈ D1 (u′,v′) ∈ R′, (u,v′) < R′, (u′,v) < R′

u u′

(u,v)

(u,v′), (u′,v) σ

2(1− p)d

(u,∗), (u′,∗) ∈ R

(1− p)d (u,v′)

dn−2(1− p)rn lnd−1
=

1

2(1−p)d2

I

O( 1
d

) = o(1)

  such  that  ,
then we will exchange   with  . It is easy to see that this symmetry
mapping  will  convert    into  an  unpermitted  tuple  and  convert

  into  permitted  tuples,  thus    is  no  longer  a  solution.
However,  it  is  possible  that  at  most    pairs

 can be expanded to new solutions (this is  because
by  the  symmetry  requirement,  the  degree  of  each  domain  value  of
each  variable  is  ).  Specifically,  the  probability  that 
can  be  expanded  to  a  new  solution  is  at  most

, thus a simple calculation yields that
the probability that   is still satisfiable after the symmetry mapping is
at most  .

I ∈ I

I

C′′ ∈ Cx τ

C′′ τ

C′′ = (X′′,R′′),X′′ = (x, x2), τ(x) = u, τ(x2) = w,

D,D2 x x2

(u,w) < R′′

u′ ∈ D,w′ ∈ D2 (u,w′), (u′,w) ∈ R′′ (u′,w′) < R′′

u u′

(u,w) C′′ τ

(u,∗), (u′,∗) ∈ R

O( 1
d

) = o(1) I

Assume  that    is  an  unsatisfiable  instance,  then  w.h.p.  all
variables in   are self-unsatisfiable variables from Lemma 2.4. This
implies  that  there  exist  a  constraint    and  an  assignment 
such  that    is  the  only  unsatisfied  one  under  .  Assume  without
loss  that    and

 are the domains of   and  , respectively. It is apparent that
.  By  our  symmetry  requirement,  there  exist

,  where    and  ,
such that a symmetry mapping of exchanging   with   will convert

  into a permitted tuple,  thus   becomes satisfiable under  .
Moreover,  using  a  similar  argument  as  above,  we  can  see  that  the
probability  that  the  new  pairs    could  expand  to
solutions  is  at  most  .  Thus  w.h.p.    has  only  one
solution after this symmetry mapping.

I ∈ I

I

I I

From  the  above  two  cases  we  can  see  that  for  any  ,  the
symmetry mapping changes its satisfiability, however,   still belongs
to    after  the  mapping,  thus    can  be  considered  as  a  fixed  point
under the symmetry mapping.　　　　　　　　　　　　　　 □

In this section, it has been shown that we can construct satisfiable
and  unsatisfiable  instances  using  exactly  the  same  method  and  the
same parameter values. Moreover, these satisfiable and unsatisfiable
instances can be transformed into each other by performing the same

 

 
C u1 u2

D1 D1 = D2 = {1,2,3,4}

R = {(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)} R {(1,1), (1,2), (2,3), (2,4), (3,1), (3,2), (4,3), (4,4)}

σ σ(x1) = 2,σ(x2) = 2 C σ (2,2)

R τ τ(x1) = 2, τ(x2) = 3 C τ

(2,3) R

Fig. 1    (A)  shows  a  symmetry  mapping  of  the  constraint    by  exchanging   with  .  (B)  shows  an  example  of  a  symmetry  mapping  by
exchanging  the  domain  value  2  with  3  in  ,  where  we  set    and  the  original  permitted  set

.    becomes    after  such  a  symmetry
mapping.  Thus  for  an  assignment  ,  if  ,  then    changes  from  satisfiable  to  unsatisfiable  under  ,  since    does  not
belong to the permitted set   any more; for an assignment  ,  if  ,  then   changes from unsatisfiable to satisfiable under  ,
since   belongs to the permitted set   after this symmetry mapping

Ke XU et al.    SAT requires exhaustive search
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mapping.  This  property  is  very  similar  to  that  of  the  self-referential
proposition  introduced  by  Gödel  [22]  in  order  to  prove  that  such  a
proposition  can  be  neither  proved  nor  disproved  (i.e.,  whether  this
proposition  is  true  or  false  cannot  be  distinguished  in  finite  formal
systems). Gödel’s results reveal the fundamental difference between
the syntax defined by rules and the semantics defined by models (or
assignments).  An algorithm is  essentially  a  finite  sequence  of  rules,
which can also be viewed as a finite formal system. In contrast,  the
exhaustive  search  method  determines,  using  the  semantic  definition
of  a  property,  whether  this  property  can  be  satisfied  through  trying
every possible model (or assignment) one by one. Inspired by Gödel’s
idea,  we  refer  to  these  satisfiable  and  unsatisfiable  instances  as  the
most  indistinguishable  examples  or  self-referential  examples.  Their
self-referential  property  makes  them  extremely  hard  to  differentiate
syntactically.  Simply  put,  in  this  context,  syntax  cannot  replace
semantics. 

■ 3  Main results
Proving complexity lower bounds (algorithmic impossibility results)
for a given problem is essentially reasoning and making conclusions
about  an  infinite  set  of  algorithms.  In  mathematics,  any  such
conclusion  should  be  based  on  assumptions  about  the  nature  of  the
infinite  set.  These  assumptions  must  be  consistent  with  the  reality
and  usually  appear  as  axioms.  Similar  to  many  combinatorial
problems,  the  general  CSP  has  no  global  structure  that  can  be
exploited  to  design  algorithms.  The  only  exact  algorithm  currently
available  for  solving  CSPs  is  a  divide-and-conquer  method  that
systematically  explores  the  solution  space  while  employing  various
pruning strategies to enhance efficiency.
In this paper, we view an algorithm as a finite formal system which

is  defined by a finite  set  of  symbols and rules.  It  is  easy to see that
finite  formal  systems  possess  greater  expressive  power  than
algorithms (Turing machines).  This is because finite formal systems
are  essentially  finite  sets  of  rules  while  algorithms  are  essentially
finite sequences of rules. Here we use finite formal systems to solve
CSPs  (i.e.,  to  determine  if  a  CSP  instance  is  satisfiable).  We  only
need  to  assume  that  this  task  is  finished  by  dividing  the  original
problem  into  subproblems.  Under  this  assumption,  we  have  the
following lemma.

n d

T (n) = O(dcn) 0 < c < 1

O(dc) n−1

Lemma 3.1  If  a  CSP  problem with    variables  and  domain  size 
can be solved in   time (  is a constant), then
at most   subproblems with   variables are needed to solve
the original problem.

d n−1

n−1 T (n−1)

Proof  It  is  easy  to  see  that    subproblems with   variables  are
sufficient to solve the original problem. By condition, a CSP problem
with   variables can be solved in   time. Note that
 

T (n) = O(dcn) = O(dcdc(n−1)) = O(dc)T (n−1),

O(dc) n−1thus at most   subproblems with   variables are needed to
solve the original problem. 　　　　　　　　　　　　　　　　□

The above lemma is a key to proving the main results of this paper.
For  a  better  understanding,  we take the classical  sorting problem as

n

T (n) = O(n)

T (n) = O(n−1)+O(1) = T (n−1)+O(1)

n−1 O(1)

an example. Assume that our goal is to prove that sorting   elements
cannot  be  done  in    time.  By  condition,  we  have

.  This  means  that  we
need  a  subproblem  of    elements  with  additional 
operations  to  solve  the  original  problem.  We  can  show  by
contradiction that this is impossible and so finish the proof.

O(dcn)

0 < c < 1

Theorem  3.2 Model  RB  cannot  be  solved  in    time  for  any
constant  .

k = 2 I

n rn lnd

0 < c < 1 I O(dcn)

I

O(dc) x

n−1

O(dc(n−1))

O(dc) O(dc) x

D

x D̃ O(dc)

x |D̃| = O(dc) Cx

x

Proof  For  the  sake  of  simplicity,  we  will  prove  that  Theorem  3.2
holds  for  Model  RB  with    by  contradiction.  Let    be  a  RB
instance  with    variables  and    constraints.  Suppose  there
exists some constant   such that   can be solved in 
time, then Lemma 3.1 implies that   can also be solved by assigning
at most   values to an arbitrary variable, say  , and then solving
the  resulting  subproblems  (with    variables)  which  require

  time.  We will  show that  there  exist  instances  where  the
  subproblems  produced  by  assigning    values  to    are

impossible  to  determine its  satisfiability.  For  convenience,  let   be
the  domain  of  ,    be  the  set  of    values  which  have  been
assigned  to    ( ),  and    be  the  set  of  constraints
containing  .

I

σ C′

Cx O(dc) o(1)

d u D̃ o(1)

u u′ u′ D\D̃ I

I

u u′ u′

D\D̃ (u,w) I

Follow the strategy of the proof of Theorem 2.5, if   is an instance
having  exactly  one  solution  ,  then  the  constraint    will  be
arbitrarily selected from  . Note that   is   compared with
the domain size  , thus the probability that   belongs to   is  .
Therefore the symmetry mapping in Theorem 2.5 will be performed
by  exchanging    with  ,  where    is  chosen  from  ,  then 
becomes  unsatisfiable.  Similarly,  if    is  an  unsatisfiable  instance,
then  the  symmetry  mapping  of  exchanging   with  ,  where    is
chosen from  , will convert   into a permitted tuple, thus 
becomes satisfiable.

O(dc)

n−1

n

O(dc)

I

Note that in either of the above cases, the   subproblems with
  variables  remain  unchanged,  while  the  satisfiability  of  the

original problem with   variables has been changed after performing
the  symmetry  mapping.  We  can  conclude  that  the 
subproblems  are  insufficient  thus  impossible  to  determine  if    is
satisfiable or unsatisfiable. This completes the proof of Theorem 3.2.

□

dn

As  mentioned  before,  finite  formal  systems  possess  greater
expressive  power  than  algorithms  (Turing  machines).  The  above
theorem indicates that no finite formal system for solving Model RB
can significantly outperform or replace the exhaustive search method,
which  evaluates    possibilities  one  by  one.  That  is  to  say,  non-
brute-force  computation  cannot  replace  brute-force  computation  for
Model  RB.  More  interestingly,  the  above  proof  follows  the  same
method (i.e., diagonalization and self-reference) used by Kurt Gödel
[22]  and  Alan  Turing  [24],  respectively,  in  their  epoch-making
papers  of  proving  logical  and  computational  impossibility  results.
This  classical  method,  pioneered  by  Cantor,  stands  out  as  not  only
simple, elegant, and powerful, but also as the only approach that has
successfully  provided  lower  bounds  on  complexity  classes.
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Moreover,  the  distinctive  mathematical  properties  and  the  inherent
extreme hardness of Model RB make it both feasible and effective in
establishing  algorithmic  impossibility  results.  Importantly,  applying
this  method  to  constructed  instances,  rather  than  directly  to
complexity  classes,  is  crucial  for  achieving a  successful  proof.  This
study  highlights  the  significance  of  creatively  utilizing  classical
methods, particularly when addressing long-standing open problems.
We believe that  the underlying idea of  this  paper  (i.e.,  Constructing
the Most Indistinguishable Examples) will unlock the door to proving
complexity lower bounds, which has always been a challenging task,
even for many polynomial-time solvable problems.
It is worth mentioning that Xu and Li [3] established a direct link

between  proved  phase  transitions  and  the  abundance  with  hard
examples by proving that Model RB has both of these two properties.
They also made a detailed comparison between Model RB and some
other  well-studied  models  with  phase  transitions,  and  stated  that
“such  mathematical  tractability  should  be  another  advantage  of
RB/RD, making it  possible  to  obtain  some interesting results  which
do  not  hold  or  cannot  be  easily  obtained  for  random  3-SAT”.  This
paper  confirms  that  remarkable  results  can  indeed  be  achieved
through a simple and elegant approach,  as expected.  More than two
thousand years ago, Laozi,  a great  Chinese thinker and philosopher,
once said: "The greatest truths are the simplest". We believe that the
truth  of  computational  hardness  should  also  adhere  to  this
fundamental  and  universal  principle  advocated  by  Laozi.  In  this
sense,  both  the  problem and the  results  of  this  paper  are  simple  yet
intuitively  accessible.  Additionally,  if  a  problem  is  so  difficult  that
there are no nontrivial results, then the most likely scenario is that the
problem under  study  is  not  inherently  foundational.  In  such  a  case,
what  should  be  done  is  to  redefine  the  problem  in  alignment  with
Laozi’s  principle.  Foundational  problems  must  be  grounded  in
fundamental  concepts.  In  this  paper,  we  argue  that  non-brute-force
computation vs. brute-force computation is more foundational than P
vs.  NP.  This  is  because  the  concept  of  brute-force  computation  is
inherently  more  fundamental  than  that  of  polynomial-time
computation.

Θ(log2 d) d

n

N = n log2 d

O(Ndk) O(Ndk log2 d) dcn
=

2cn log2 d
= 2cN

CSP  can  be  encoded  into  SAT  by  use  of  the  log-encoding  [25]
which introduces a new Boolean variable for each bit in the domain
value  of  each  CSP  variable  and  thus  uses  a  logarithmic  number  of
Boolean  variables  to  encode  domains.  It  must  be  emphasized  that
each clause of these encoded SAT instances could be very long with

  Boolean  variables  if  the  domain  size    grows  with  the
number of CSP variables  . This is in sharp contrast to 3-SAT that is
very short in clause length and has received the most attention in the
past half-century. For encoded SAT instances of Model RB using the
log-encoding,  we  have  totally    Boolean  variables,

  clauses  and    literals.  Note  that 
,  so  it  is  easy to  derive the following corollary from

Theorem 3.2.

N

O(2cN) 0 < c < 1

Corollary  3.3  SAT  with    Boolean  variables  cannot  be  solved  in
 time for any constant  .

k

The above corollary holds for SAT with no restriction on the clause
length,  and  so  is  not  directly  applicable  to  -SAT  with  constant

k ⩾ 3

l

N = n logl d O(lcN)

0 < c < 1

  whose  lower  bounds  can  be  obtained  by  reduction  from
encoded  SAT  instances  of  Model  RB.  Other  CSP  instances  of
domain  size    can  also  be  encoded  from  Model  RB  using

 variables, thus cannot be solved in   time for any
constant  .

,

It  is  well-known that  SAT is  NP-complete  [26],  and so  it  follows
that P   NP. 
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■ Appendixes

The initial draft of the paper entitled “SAT Requires Exhaustive Search” was completed and released via arXiv in February 2023. During the
subsequent two-year period, the authors have engaged in in-depth discussions with a number of esteemed experts in related fields. In the past
year, they have actively shared their work with hundreds of experts around the world. As of March 2025, more than 30 experts have provided
highly  positive  feedback,  including  remarks  like  “truly  revolutionary”  from  Prof.  Gregory  Chaitin,  the  father  of  algorithmic  information
theory,  who  proved  Chaitin’s  incompleteness  theorem  similar  to  Gödel’s  incompleteness  theorem.  In  response  to  the  comments  and
suggestions  from  experts,  the  authors  have  redefined  the  foundational  problem  of  computer  science.  Additionally,  they  have  added  an
extended abstract to more comprehensively elaborate on the motivation, conceptual framework, and techniques of this paper. After extensive
and thorough deliberations, Frontiers of Computer Science has decided to publish this paper. After obtaining consent from the authors and the
reviewers,  comments  from 7 experts  are  being published simultaneously,  offering thought-provoking perspectives on the core ideas of  this
paper from various angles.
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Appendix A

Construction is all you need
——extended abstract of “SAT requires exhaustive search”
Our  paper  introduces  a  new  framework  for  studying  computational
hardness,  which  can  be  seen  as  an  extension  of  Gödel’s  framework
for  proving  the  incompleteness  theorem.  Gödel’s  framework
demonstrates  that  a  constructed  self-referential  proposition  is
unprovable, which means that the reasoning based on syntax cannot
determine  the  semantics  of  this  proposition.  Within  this  new
framework, all aspects of computational hardness, including the P vs.
NP problem, should be reconsidered. This famous problem obscures
the  surprising  fact  that  we  do  not  know  any  nontrivial  result  of
complexity  lower  bounds  (e.g.,  a  super-linear  lower  bound),  but  we
know barriers to obtaining such results. In many cases, barriers arise
simply  because  we  are  not  on  the  right  track,  and  sometimes  the
problem  itself  is  the  biggest  barrier.  As  the  old  saying  goes,  a
question well asked is half answered. Therefore, we must look back
at  history  and  return  to  the  origin  to  redefine  the  foundational
problem  of  computer  science — —namely,  identifying  the  right
question to ask when a given problem is already computable.
Computation is  fundamentally  a  mechanical  process  of  reasoning.

In other words, it  can be viewed as mechanized mathematics. There
are two main lines of research on the limits of computation. Gödel’s
results  address  the  limits  of  reasoning  within  finite  formal  systems,
while  Turing’s  results  explore  the  limits  of  mechanization  (i.e.,
whether  mechanical  processes  can  be  realized  in  the  physical
universe). Computational time fundamentally relies on the reasoning
of  concrete  examples  rather  than  the  computability  of  abstract
problems.  The  P  vs.  NP  problem is  a  natural  extension  of  Turing’s
concept  of  computability.  However,  even  if  a  problem  is
uncomputable, each instance might still be solved quickly, though no
general  (mechanical)  method  exists  to  handle  all  instances.  In  other
words,  computability  is  unrelated  to  computational  time.  Therefore,
Turing’s  framework  of  computability  is  not  suitable  for  studying
computational  hardness.  This  also  explains  why  there  are  so  many
barriers  in  current  complexity  theory  studies:  we  might  have  taken
the wrong path from the very beginning. It is also worth noting that
Turing  himself  clearly  recognized  that  reasoning,  rather  than
computability,  is  related  to  time.  He  once  posed  the  profound
question:  “Does  time  enter  into  ‘This  proposition  is  difficult  to
prove’?”  (L.  Wittgenstein,  Lectures  on  the  Foundations  of
Mathematics, Cambridge, 1939: From the Notes of R.G. Bosanquet,
N. Malcolm, R. Rhees, and Y. Smythies. Harvester Press, 1976).
In fact, the Turing machine itself is an assumption about machines

(i.e.,  mechanized  finite  formal  systems)  that  can  be  realized  in  the
physical  universe.  In  essence,  the  Turing  machine  represents  a
fundamental  physical  assumption,  and  Turing’s  findings  on
uncomputability  signify  the  physical  limits  of  mechanically  solving
all  instances  of  a  problem.  The  computational  hardness  of  concrete
examples  arises  from  the  limits  of  reasoning.  It  is  unnecessary  to
discuss  the  mechanical  solving  of  these  examples  based  on  the
concept  of  Turing  machines.  This  is  because  if  the  reasoning  of
concrete examples requires a long time, then solving these examples
mechanically  will  also  take  a  long  time.  We  can  also  say  that
computational  hardness  results  are  essentially  mathematical
impossibility  results  of  reasoning.  Any  mathematical  impossibility
result  cannot  be  proved  without  restrictions  on  the  form  of

mathematics.  To  derive  such  results,  it  is  essential  to  make  a
mathematical (rather than physical) assumption about reasoning.
The  essence  of  computational  hardness  lies  not  in  the  distinction

between  deterministic  polynomial-time  computation  and  non-
deterministic polynomial-time computation (i.e., P vs. NP), but in the
distinction  between  non-brute-force  computation  and  brute-force
computation.  This  distinction  essentially  questions  whether  syntax
can  replace  semantics  (i.e.,  whether  the  part  can  replace  the  whole
through  reasoning).  For  CSPs,  this  question  reduces  to  whether  a
certain number of subproblems can replace the whole problem, based
on a mathematical assumption about the reasoning of CSPs. We then
construct self-referential CSPs and ultimately prove by contradiction
that  a  certain  number  of  subproblems  cannot  replace  the  whole
problem  for  these  CSPs.  This  is  very  similar  to  Gödel’s  study  on
whether a finite set of true mathematical statements (i.e., axioms) can
replace  an  infinite  set  of  all  true  mathematical  statements  through
reasoning. Therefore, our result can be considered an incompleteness
theorem  for  CSPs,  primarily  due  to  the  gap  between  syntax  and
semantics.
Gödel’s proof and our proof address two different cases (i.e., first-

order  logic  and  propositional  logic,  respectively).  The  essence  of
both proofs (i.e., the use of self-reference) is the same, but there are
differences  in  constructing  the  self-referential  object.  Specifically,
this involves constructing an object such that negating it results in an
object equivalent to itself. In Gödel’s work, the self-referential object
is  a  logical  formula.  In  our  work,  the  self-referential  object  is  an
infinite  set  of  satisfiable  and  unsatisfiable  examples.  These  self-
referential examples necessitate brute-force computation because the
part  cannot  replace  the  whole  for  these  examples.  In  other  words,
reasoning  based  on  syntax  is  ineffective,  and  only  brute-force
computation based on semantics can solve these examples. It should
also  be  emphasized  that  our  hardness  results  apply  to  finite  formal
systems under  a  mathematical  assumption.  Turing  machines,  on  the
other  hand,  are  finite  formal  systems  under  a  physical  assumption.
Thus,  while  both are  subsets  of  a  larger  set,  they cannot  be directly
compared.  In  other  words,  our  work  and  current  complexity  theory
are  two  paths  that  extend  different  frameworks  from  the  same
starting  point  in  computer  science.  Specifically,  non-brute-force
computation  vs.  brute-force  computation  is  an  extension  of  Gödel’s
framework, while P vs. NP is an extension of Turing’s framework.
Finally,  we  address  the  two  main  barriers  in  complexity  theory.

The  relativization  barrier  indicates  that  the  diagonalization  method
cannot  separate  P  from  NP.  In  our  work,  this  method  is  applied  to
constructed  satisfiable  and  unsatisfiable  examples,  avoiding  the
relativization  barrier.  Regarding  the  natural  proof  barrier,  the
diagonalization  method  can  circumvent  it.  Thus,  using  constructed
examples,  we  bypass  both  barriers.  The  fundamental  reason  is  that
Gödel’s  framework  (instead  of  Turing’s)  is  used  to  study
computational  hardness.  Many  believe  that  complexity  theory  is
difficult  because  it  deals  with  computational  hardness.  This  is  a
misunderstanding.  Our  work  shows  that  extreme  hardness  (brute-
force computation) is easy to understand through the construction of
self-referential examples. In short, construction is all you need.
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Appendix B

Comments on paper entitled: SAT requires exhaustive search

Bridging theory and practice in computational complexity and algorithm design

Shaowei CAI

Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

This  paper  provides  a  new  way  to  understand  the  hardness  of
computational  problems.  I  find  the  idea  of  understanding  the
hardness  of  a  problem  by  constructing  extremely  hard  instances  is
very  interesting,  and  to  some  extent  can  bridge  the  gap  between
theory  and  practice  in  computational  complexity  and  algorithm
design.
It  has been widely acknowledged that there is a large discrepancy

between  the  theory  and  practice  of  algorithm  design.  For  example,
while SAT is proven to be NP-complete,  many SAT instances from
industries  are  solved  efficiently  by  modern  SAT  solvers.  This
discrepancy  arises  because  complexity  theory  focuses  on  the  worst-
case  complexity  of  problems,  while  real-world  SAT instances  often
possess  structural  properties  that  allow  for  efficient  resolution.  For
example,  industrial  SAT  problems  derived  from  hardware
verification  tasks  can  be  large  (with  millions  of  variables  and
clauses)  but  are  highly  structured,  containing  hierarchical  and
modular  components.  These  structures  are  exploitable  by  SAT
solvers  through  techniques  like  conflict-driven  clause  learning
(CDCL),  enabling  them  to  find  solutions  or  prove  unsatisfiability
without exhaustively exploring the entire solution space.
The  fundamental  reason  for  this  gap  is  that  computational

complexity theory addresses the hardness of problems in general, not
specific  instances.  Previous  theoretical  works  usually  provide
negative  complexity  results  without  giving  any  concrete  hard
instance.  Complexity  classes  like  NP-complete  capture  the  worst-
case scenario.  However,  many real-world instances do not lie in the
difficult  regions,  and  sometimes  it  is  even  hard  to  find  a  difficult
instance,  as  claimed  in  the  hardness  results  in  theory.  In  order  to
solve  problems,  algorithms  are  implemented  into  programs  and
eventually  executed  on  computers.  In  this  sense,  constructive
approach, instead of existence theorems, could shed additional useful
insights on understanding the hardness of problems, and is helpful for
bridging the gap between theory and practice.
The RB model, as described in the paper, generates instances with

properties  that  make  them  difficult  for  algorithms  to  solve  without
exhaustive  search.  These  instances  are  designed  to  have  a  phase
transition where the probability of satisfiability changes abruptly. At
this critical point, instances are neither trivially satisfiable nor easily
proven  to  be  unsatisfiable.  They  often  have  a  balance  between
constraint  density  and  variable  freedom  that  challenges  both
systematic  and  stochastic  search  algorithms.  Additionally,  the
symmetry  requirement  in  RB  model  instances  means  that  variables
and  their  domains  are  structured  in  a  way  that  prevents  algorithms
from  exploiting  structures  to  guide  the  search.  The  frb100-40
instance remains an unsolved challenge even after 20 years. Despite
numerous attempts, no one has been able to solve it.
Empirically,  many  CSP  instances  generated  from  the  RB  model

have  remained  unsolved  for  years  despite  advances  in  algorithmic
techniques.  These  instances  are  constructed  to  avoid  the  structural
biases  that  algorithms  typically  exploit.  The  hardness  of  these
instances  is  not  an  anomaly,  but  a  reflection  of  the  problem’s
inherent complexity when certain parameters are chosen. To establish
complexity  lower  bounds,  the  authors  rely  on  a  single  assumption
regarding the exact algorithms for solving CSPs — “We only need to
assume that this task is finished by dividing the original problem into
subproblems”. This should be true in algorithm design. As we know,
at least until now, all exact algorithms for CSPs are based on divide-
and-conquer style, such as backtracking methods.
This paper provides a constructive approach for understanding the

complexity of problems. This constructive approach bridges the gap
between  theory  and  practice,  as  it  provides  concrete  challenges  for
algorithm  designers  to  overcome.  Moreover,  insights  gained  from
analyzing these hard instances  can inform the development  of  more
robust  and  generalizable  algorithms.  This  interplay  between  theory
and  practice  is  essential  for  advancing  the  field  of  computational
complexity  and  algorithm  design.  In  essence,  theory  helps  identify
barriers  and  opportunities,  while  practice  refines  and  expands  the
range of solvable problems through algorithmic innovation.

On the structure and complexity of computational problems

Yun FAN

School of Mathematice and Statistics, Central China Normal University, Wuhan 430079, China

The paper discusses a special type of CSP, named Model RB, which has been proved to have an exact phase transition from satisfiability
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to  unsatisfiability  (K.  Xu  and  W.  Li.  Exact  phase  transitions  in
random  constraint  satisfaction  problems,  Journal  of  Artificial
Intelligence Research, 12(1): 93−103, 2000). Xu and Zhou explored
what happened in the phase transition point. Inspired by the Gödel’s
self-referential  proposition which is  unprovable,  they introduced the
so-called  “self-unsatisfiable  constraint”,  “self-unsatisfiable  variable”
and  “self-unsatisfiable  instance”  (called  “self-unsatisfiable  formula”
in  their  paper).  They  find  a  way,  called  symmetry  mapping,  to
exchange  self-unsatisfiable  instances  to  the  instances  with  unique
solution,  and  vise  versa.  Similarly  to  Gödel’s  diagonal  argument,
they proved by contradiction that any algorithm solving RB-problem
has  at  least  exponential  complexity,  i.e.,  Theorem  3.2  and  its
Corollary 3.3, which are really surprising results.

n

Computational  problems  take  many  various  forms,  for  example,
algebraic,  combinatorial,  number-theoretic,  etc.,  which  vary  greatly
from one to the other. Generally speaking, the richer the structure of
the problem is, the simpler the algorithm of the problem is. Because:
the structure would help us to reduce the solving of instances of the
problem  to  a  small  number  of  instances.  For  example,  to  solve
systems  of  linear  equations  of    variables,  Gaussian  elimination
reduce systems of linear equations to the systems of linear equations
which coefficient matrices have diagonal submatrices.
There are three situations.
The best situation is that by the reductions we can get an algorithm

of  polynomial  time  to  solve  the  problem  (e.g.,  solving  systems  of
linear equations described as above).
The worst situation is that the problem is not reducible completely

so that we can solve it  only by exhaustive search. Xu and Zhou say
this  case  is  “extremely  hard”.  For  example,  the  general  decoding
problem  (i.e.,  essentially  speaking,  given  a  subset  and  a  point  in  a
finite metric space, find the point in the subset which is closest to the
given point) is extremely hard.
The  situation  in  between is  that,  though the  problem is  reducible,

we  do  not  find  an  algorithm  of  polynomial  time  to  solve  it.  For
example,  for  the  decoding  problem  of  linear  codes  (i.e.,  in  the
decoding  problem  mentioned  above,  further  assume  that  the  finite

metric  space  is  a  vector  space  and  the  given  subset  is  a  linear
subspace),  though  we  can  use  the  linear  structure  to  reduce  the
question to a smaller question about the quotient space, we still have
no algorithm of polynomial time to solve it.

n n−1

As  Xu  and  Zhou  said,  the  situation  in  between  appears  often
difficult  to  deal  with,  however,  the  extremely  hard  situation  is
relatively not so difficult to deal with. Their work means that, though
the problem RB can be reducible (e.g., reduce the RB-problem with
  variables  to  the  RB-problem  with    variables),  but  it  does

contain many hard instances which present some wonderful natures,
so  that  the  authors  of  the  paper  can  spot  the  contradiction  in  their
proof.
A  big  contribution  of  their  work  is  that  they  find  a  new  way  to

study  the  computation  hardness,  i.e.,  construct  a  subproblem
containing  the  peculiar  hard  instances,  and  use  it  to  estimate  the
complexity  of  the  problem.  Their  work implies  seemingly  that  such
instances  are  usually  appeared  in  the  transitional  areas.  Thus  their
work suggested an insightful research point of view: if a problem has
an  exact  phase  transition  similar  to  RB-problem,  then  it  maybe
interesting  to  explore  what  happened  in  the  zone  of  the  phase
transition.

O(dcn)

0 < c < 1

A very original innovation of the paper of Xu and Zhou is that they
regard the computational problem they are studying as a finite formal
system, just like the finite formal systems Gödel worked, and use the
Gödel’s diagonal argument, and some thing like that, to consider the
hardness  of  the  computational  problem.  This  ideology  is  different
from  the  common  ideas  in  current  complexity  theory.  To  be  more
explicit, finite formal systems may be not algorithms, but algorithms
are finite formal systems (mechanized finite formal systems). As Xu
and  Zhou  said:  “our  work  and  current  complexity  theory  are  two
paths  that  extend different  frameworks from the same starting point
in  computer  science.”  Within  the  new  framework,  modifying  the
Gödel’s  diagonal  argument,  they  are  successful  in  proving  by
contradiction  that  Model  RB  cannot  be  solved  in    time  for

.

The power of symmetry in proving lower bounds

Zhiguo FU

School of Information Science and Technology, Northeast Normal University, Changchun 130117, China

This paper offers a new perspective on computational complexity by
comparing Gödel’s and Turing’s results on the limits of computation.
Specifically,  the  authors  propose  a  novel  approach,  viewing
computational complexity as the limits of reasoning within bounded
time,  a  perspective  that  cleverly  connects  with  Gödel’s  work  on
proving the incompleteness theorem.
Innovatively, this paper adopts a constructive approach to studying

the hardness of problems. The core of computational complexity lies
in  understanding  and  proving  hardness.  However,  it  is  difficult  to
determine the complexity lower bounds, and we know very little how

to  characterize  hardness  effectively.  And  we  are  lack  of  effective
methods  to  generate  genuinely  hard  instances.  The  concept  of  NP-
completeness  only  characterizes  relative  hardness  by  indicating  that
some  problems  may  be  harder  than  others,  without  explaining  the
underlying reasons. The famous physicist Richard Feynman’s quote,
“What  I  cannot  create,  I  do  not  understand,”  aptly  captures  this
dilemma.  This  research  addresses  the  challenge  by  adopting  a
constructive  method.  The  authors  utilize  the  phase  transition
phenomenon  to  construct  random  Constraint  Satisfaction  Problem
(CSP)  instances  based  on  a  well-known CSP model,  namely  Model
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RB. Their  proof shows that the extreme hardness of the constructed
instances comes from symmetry.
In  detail,  I  think an inherent  difficulty  in  proving hardness  lies  in

the  fact  that  our  goal  is  to  demonstrate  that  an  object  possesses  a
certain  property  related  to  hardness.  However,  we  lack  an  efficient
method for analyzing this property (i.e., determining whether a given
object  has  this  property).  If  such  a  method  existed,  it  would
contradict the hardness of the object we aim to prove. In this paper,
the  authors  cleverly  utilize  symmetry  to  overcome  this  difficulty,
which, as far as I can see, is the most significant technical innovation
of this work. Specifically, the authors first use symmetry to construct
random  CSP  instances.  Subsequently,  they  demonstrate  that  both

satisfiable  and  unsatisfiable  instances  can  be  generated  at  the  phase
transition point. Finally, by introducing the symmetry mapping, they
prove  that  these  satisfiable  and  unsatisfiable  instances  possess  a
certain symmetry, making them difficult to distinguish. I believe that
this  approach  not  only  proves  the  hardness,  but  also  helps  to
understand  it  intuitively.  In  addition,  I  find  the  assumption  about
CSPs made in this paper to be reasonable and acceptable.
In  summary,  this  paper  not  only  offers  a  new  perspective  on

computational  complexity  but  also  demonstrates  the  power  of
construction  and  symmetry  in  proving  complexity  lower  bounds.  I
believe that  it  contributes to a fresh understanding of  computational
hardness and paves the way for future research in this area.

A new direction for computational complexity

Angsheng LI

School of Computer Science and Engineering, Beihang University, Beijing 100191, China

This paper proposed a completely new approach to understanding the
concept of “hardness” in designing algorithms.
A  computational  problem  requires  us  to  find  a  solution  by

reasoning based on the relationships of the data points of a problem.
The solutions of a computational problem are embedded in the space
of the data points of the computational problem. Finding a solution of
a  computational  problem  is  to  eliminate  the  uncertainty  that  blocks
the way to finding the solution.
Apparently,  there  are  uncertainties  in  finding  a  solution  of  a

computational  problem.  Once  the  uncertainty  that  is  essential  for
finding  a  solution  of  a  computational  problem  is  eliminated,  a
solution of the computational problem shows up.
When  Juris  Hartmanis  defined  the  metric  of  computational

complexity,  he  initially  tried  to  propose  an  information  measure  of
the hardness  of  a  problem.  That  is,  the  hardness  of  a  computational
problem  is  the  amount  of  uncertainty  that  must  be  eliminated  for
finding a solution of the problem. Hartmanis examined the metric of
Shannon  entropy.  Due  to  the  fact  that  Shannon’s  entropy  measures
only  the  amount  of  uncertainty  that  is  embedded  in  a  random
variable,  which  is  invalid  for  measuring  the  amount  of  uncertainty
that  is  embedded  in  finding  a  solution  of  a  computational  problem.
For  this  reason,  Harmanis  defined  the  time  complexity  and  space
complexity simply based on the execution of a Turing machine.
When I visited Juris Hartmanis in 2008, Juris suggested me to give

a  new  definition  of  information,  that  is,  the  “information”  in
“information  processing”  in  computer  science,  instead  of  the
“information” in end-to-end communication. I spent 8 years working
on  this  project,  eventually  published  my  theory  paper  on  structural
information  theory  in  2016.  Since  2016,  the  principles  of  structural
information  theory  have  experienced  the  first  wave  application
investigations  in  a  wide  range  of  areas  such  as  identification  of
chromatin topologically associating domains in cells, classification of
cancer  cells,  network  security,  ranking  algorithms,  image

identification,  game  design,  natural  language  understanding,  neural
network  learning  etc.  Experiments  verify  that  structural  information
theory  provides  the  principles  for  learning  and  intelligent  strategies
with  remarkable  advances  in  both  precision  and  efficiency.  From
2016  to  2024,  I  established  the  information  science  principles  of
artificial  intelligence,  providing  the  first  mathematical  principle  of
AI.  The  research  so  far  explores  that  “information”  is  a  scientific
concept with deep theory and wide applications, instead of merely a
communication  concept  as  that  in  Shannon  information  theory,  and
that “information” is the key to open the information world.
The  paper  entitled:  SAT  Requires  Exhaustive  Search,  by  Ke  Xu

and  Guangyan  Zhou,  persists  the  same  idea  in  understanding  the
“hardness” of a computational problem. It shows that:

1. algorithm design is based on reasoning;
2. reasoning is based on relationships;
3. if there is no relationship among the data points, then there is
no  the  basis  for  reasoning,  and  hence,  there  is  no  cues  for
designing algorithms;

4. if there is no cue for designing algorithms, meaning that there
is  no  cue  to  reduce  uncertainty,  then  the  only  way  is  to  do
exhaustive search.

The  paper  proposed  a  construction  of  hard  instances  based  on  a
random model of constraint satisfaction problem, namely model RB,
proposed more than 20 years ago.
The  authors  proved  the  hardness  of  the  constructed  instances  by

developing  an  approach  similar  to  the  proof  of  the  incompleteness
theorem of Gödel in 1931.
The paper shows:

1. extremely hard instances can be constructed;
2. extremely  hard  instances  can  only  be  constructed,  while
“natural” instances in everyday life may not be too hard;

3. extremely hard instances are easy to prove that they are hard.
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The  paper  pioneered  a  white  box  approach  to  understanding  the
hardness  of  computational  problems,  leading  to  a  new direction  for

computational complexity.

On the gap between syntax and semantics

Wanwei LIU

College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
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The  theory  of  computability  and  computational  complexity  is
probably  the  most  “elegant”  part  of  theoretical  computer  science.
Many  difficult  but  fundamental  problems  (including  )  just
belong to  this  subject.  So far,  all  efforts  to  prove “ ” and/or

 have failed. Although we cannot fully understand the most
essential  cause  that  makes  this  problem  difficult,  some  thought-
provoking results  have still  been obtained.  In  1975,  Baker,  Gill  and
Solovay showed that one can construct both two languages   and 
making    and  .  Consequently,    and 
cannot  be  separated  by diagonalization,  meanwhile   cannot
be proven merely by analogy (or, simulation).

CSP RB

CSP

P NP

In this paper, the authors present a new approach to understanding
the essence of “hardness” of computing — they present a hard case
construction  approach,  based  on  a  special  random  model  of
constraint  satisfaction problem ( ,  for  short),  called  ,  which
is proposed by Xu and Li in 2000 or so. For  s, non-brute-force
computation  vs.  brute-force  computation  (instead  of    vs.  )  is
reduced to “whether the whole problem can be replaced by a certain
number of subproblems”.

CSPBy constructing self-referential examples of  , they show that
“Model RB (with n variables and domain size d) cannot be solved

in O(dc·n) time for any constant 0<c<1”,
and as the corollary, they have

SAT“  cannot be solved in time O(2c·n) for any 0<c<1”.

This is definitely a landmark in computer science and mathematics, if
the conclusion is correct.
From  the  perspective  of  logic,  I  was  deeply  attracted  by  the

following insight pointed out in Xu and Zhou’s paper:

“... However,  even if  a problem is uncomputable,  each instance
might  still  be  solved  quickly,  though  no  general  (mechanical)
method exists to handle all instances ...”

f : N→ {0,1} f

f

0

—it  reminds  me  the  relation  between  syntax  and  semantics!  As
shown in Gödel’s theorem of incompleteness: any first order system
containing arithmetic axioms cannot be (completely) axiomatized by
preserving soundness.  Note  that  this  great  theorem never  denies  the
existence  of  the  system  (or  simply,  formula  set)  that  precisely
containing FOL formulas which are arithmetically true. One may just
“collect”  them  into  a  set  as  axioms,  yet  such  system  becomes
“meaningless”,  because one have no way to decide whether a given
formula belongs to  it  or  not.  Another  example is,  suppose,  we have
some  function  ,  namely,    is  the  characteristic
function  of  some  subset  of  natural  numbers,  then  can  we  always
describe  the  mapping  rule  of    using  some  given  “standard
operations”?.  Definitely  not!  In  addition,  we  even  know  that  the
measure  of  such “describable  functions”  is  ,  when  taking  all  such
functions into account. The reason is, each such function corresponds
to  a  sequence  of  description  with  finite  length.  This  might  be  the
“gap” between syntax and semantics.
Then, turn to computation complexity, the authors point that

“...  The  essence  of  computational  hardness  lies  not  in  the
distinction  between  deterministic  polynomial  computation  and
non-deterministic polynomial computation (i.e., P vs. NP), but in
the  contradiction  between  non-brute-force  computation  and
brute-force  computation.  This  distinction  essentially  questions
whether syntax can replace semantics ...”

In my opinion, the instances created in Xu and Zhou’s paper can be
seen  as  twin  instances:  although  they  share  the  same  syntax,  they
differ  in  their  semantics,  and  semantical  feature  cannot  be  captured
by their (even, have no) syntactical counterpart.
Then,  from  Gödel’s  theorem  (of  incompleteness)  to  Tarski’s

(undefinability) theorem, then to Turing’s “uncomputability”, maybe
the  gap  between  syntax  and  semantics  is  the  “manipulator”  hidden
behind  them.  Xu  and  Zhou’s  paper  makes  me  notice  this  important
issue that has once been ignored.

Proving computational hardness: uncertainty can be determined

Bin WANG

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Computational complexity theory is a fundamental area of computer
science, extensively studied by researchers in mathematics, computer
science,  and  statistical  physics.  The  hardness  of  a  problem  stems
from the uncertainty of its solvability, thus proving hardness equates
to proving its uncertainty.

It  is  well  known  that  the  hardest  instances  of  NP-complete
problems  are  concentrated  in  the  sharp  transition  region,  where
instances are either satisfiable or unsatisfiable, exhibiting the highest
uncertainty.  Although  random  3-SAT  can  generate  instances  with
uncertain satisfiability,  this  uncertainty has not  been mathematically
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proven,  lacking  the  foundation  for  a  formal  proof  of  hardness.
Meanwhile,  easy  problems  like  2-SAT  and  XORSAT exhibit  sharp
threshold  results  but  are  not  suitable  for  hardness  proofs.  The
fundamental  reason  behind  this  is  that  the  correlation  within  the
solution  space  (i.e.,  the  set  of  all  possible  assignments)  is  a  crucial
factor  influencing  the  complexity  of  the  problem.  Put  simply,  the
more  independent  (less  correlated)  the  solution  space  is,  the  harder
the  problem  becomes.  The  assignments  of  3-SAT  are  highly
correlated,  often  agreeing  on  about  half  of  the  variables.  This
correlation  causes  the  second  moment  to  grow  exponentially
compared to the square of its expectation, leading to the failure of the
second-moment method.

I I

I

σ τ
Pr(σ,τ satisfy I)

Pr(σ satisfies I)·Pr(τ satisfies I)
⩾ 1

σ,τ

E[X2]

E[X]2 ≈ 1
E[X2]∑

σ,τPr(σ,τ satisfy I)
= 1

E[X]2
∑
σ,τPr(σ satisfies I)·Pr(τ satisfies I)

= 1
∑
σ,τPr(σ,τ satisfy I)∑

σ,τPr(σ satisfies I)·Pr(τ satisfies I)
≈ 1

In  contrast,  the  uncertainty  of  whether  the  RB  instances  are
satisfiable  or  unsatisfiable  can  be  rigorously  proved.  From  Lemma
2.2  and  Corollary  2.3  in  Xu  and  Zhou’s  paper,  both  the  probability
that  a  random  instance    is  unsatisfiable  and  the  probability  that 
has  exactly  one  solution  can  be  bounded  below  by  a  positive
constant. That is to say, the status of   is determined to be uncertain.
This  property  makes  RB  instances  a  viable  foundation  for
establishing  hardness  results.  From  a  mathematical  perspective,
proving the uncertainty of  the RB model  is  significantly  easier  than
that  of  3-SAT.  I  think  the  key  reason  is  that  in  the  RB  model,  the
domain  size  grows  with  the  number  of  variables,  changing  the
structure  of  the  solution  space.  Specifically,  this  significantly
weakens  the  correlation  between  assignments,  making  the  solution
space  appear  nearly  independent.  This  independence  enables  the
success  of  the  second-moment  method.  Note  that  for  any  two
assignments   and  , it holds that  .
Furthermore,    are  independent  if  and  only  if  the  equality  holds
for the above inequality. As shown by the authors, the RB model has

  in  the  satisfiable  region.  Since  ,

and  ,  then

.  Thus,  there  is  strong  evidence

E[X2]

that  solution  space  of  the  RB  model  exhibits  near-independence.
Furthermore,  the  dominant  assignment  pairs  contributing  to 
are  those  with  the  largest  distance  (i.e.,  agreeing  on  no  variables),
strengthening this  independence.  This  property also ensures  that  the
slight  change  made  by  the  symmetry  mapping  in  Xu  and  Zhou’s
paper  will  not  affect  the  remaining  solution  space.  Precisely  due  to
this  property,  Xu  and  Zhou  can  use  the  classical  diagonalization
method  to  prove,  by  contradiction,  that  exhaustive  search  is
indispensable for eliminating uncertainty.
From  a  computational  perspective,  solving  a  combinatorial

problem fundamentally involves compressing the solution space, i.e.,
efficiently filtering feasible solutions from a vast set of candidates. In
statistical  terms,  this  is  analogous  to  dimensionality  reduction.
Interestingly,  this  paper  demonstrates  that  for  CSP  and  SAT
problems, it is possible to construct extremely hard instances that are
incompressible. The independence of the solution space prevents any
method  from  significantly  reducing  the  search  space,  ultimately
leading to the incompressibility of the instances.
I  find the mathematical  derivations  in  Xu and Zhou’s  paper  to  be

correct.  Additionally,  this  paper  introduces  a  mathematical
assumption  to  its  reasoning,  which  I  find  both  necessary  and  well-
justified.  The  challenge  of  proving  impossibility  results  has  a  long
history in mathematics. For example, it took over two thousand years
to prove the impossibility of trisecting an arbitrary angle using only a
straightedge  and  compass.  Such  impossibility  results  are  inherently
conditional —they  hold  under  specific  mathematical  frameworks
rather than in an unrestricted mathematical setting. The authors argue
that  the  Turing  machine  represents  a  fundamental  physical
assumption. This perspective seems reasonable to me, as the Turing
machine,  in  my  view,  does  not  impose  any  restrictions  on
mathematics.  Incompressibility  results  are  a  type  of  mathematical
impossibility  result,  and  proving  them  requires  introducing  an
assumption that restricts the mathematical framework. This necessity
aligns with the historical approach to proving impossibility results.

Different phase transitions of random CSPs

Pan ZHANG

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

The  phase  transitions  in  random  constraint  satisfaction  problems
(CSPs), such as the K-SAT problem and the coloring problem, have
been extensively studied in statistical physics as models of spin glass
systems,  which  exhibit  disorder  and  frustration.  Research  in
statistical physics has focused on the structure of the solution space,
linking  it  to  average-case  computational  complexity  and  the  phase
transition  between  the  “almost  satisfiable  phase”  and  the  “almost
unsatisfiable  phase.”  The  hardest  instances  typically  lie  near  this
phase transition.

k

Typical  problems  in  spin-glass  theory  involve  a  fixed-length
domain  size.  For  example,  in  K-SAT,  each  variable  has  only  two
possible states. However, Model RB, studied by Xu and Zhou, differs
significantly from standard random CSPs like  -SAT. In Model RB,

d = nα

n

the  domain  size    grows  polynomially  with  the  number  of
variables  .  This  growth  leads  to  distinct  properties  compared  to
traditional CSPs studied in statistical physics.

1    Solution space correlations and domain size

k

Model  RB’s  large  domain  size  means  that  two  assignments  can  be
very  different,  with  a  large  Hamming  distance,  and  most  pairs  of
assignments  are nearly independent.  This  results  in  a  solution space
dominated  by  isolated  configurations.  In  contrast,  -SAT problems,
with  their  fixed-length  Boolean  variables,  exhibit  strong  local
correlations  due  to  variable  overlap  in  clauses.  Near  the  phase
transition,  solutions  form  clusters  with  small  Hamming  distances,
separated by energy or entropy barriers.
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2    Critical behavior and phase transition sharpness

rcr

k

Model RB has an exact and mathematically tractable phase transition
with  a  sharp  threshold  ,  determined by methods  like  the  second-
moment  method.  Instances  at  this  threshold  are  either  satisfiable  or
unsatisfiable  due  to  violated  constraints.  In  -SAT,  while  a  sharp
satisfiability  threshold  exists,  the  critical  region in  the  hard-to-solve
phase  is  characterized  by  a  proliferation  of  frozen  clusters,  where  a
finite  fraction  of  variables  share  a  partial  configuration.  This  aspect
remains challenging for rigorous mathematical methods.

3    Algorithmic hardness and energy landscapes
The exponential number of independent variables in Model RB may
create a flat ground-state-energy landscape with exponentially many
local  minima,  forcing  algorithms  to  perform  exhaustive  searches

k

k

rather than relying on local heuristics. This is analogous to the frozen
phase  in  -SAT,  where  solution  clusters  are  hard  to  find  without
directly  accessing  the  frozen  variables.  Additionally,  Model  RB
avoids  trivial  unsatisfiability  by  balancing  constraint  density  and
domain growth, unlike  -SAT, which relies solely on clause density
tuning.

k

In conclusion, Model RB’s polynomial domain size growth makes
its  phase  transition  distinct  from  traditional  random  CSPs  like  -
SAT.  These  properties  make  Model  RB  a  unique  benchmark  for
rigorously  studying  computational  limits.  The  interplay  between
Model  RB and  other  CSPs  enriches  both  computational  complexity
theory  and  statistical  physics,  highlighting  its  value  as  a  bridge
between these disciplines.
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