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Abstract

This paper analyzes the resolution complexity of two random constraint satisfaction problem (CSP) models (i.e. Model RB/RD)
for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into
CNF formulas, it is proved that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential
size. Thus, we not only introduce new families of CSPs and CNF formulas hard to solve, which can be useful in the experimental
evaluation of CSP and SAT algorithms, but also propose models with both many hard instances and exact phase transitions. Finally,
conclusions are presented, as well as a detailed comparison of Model RB/RD with the Hamiltonian cycle problem and random
3-SAT, which, respectively, exhibit three different kinds of phase transition behavior in NP-complete problems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal paper by Cheeseman et al. in 1991, the study of phase transition and threshold phenomena has
been among the most vibrant areas in artificial intelligence, and is emerging as an active interdisciplinary research field
of computer science, discrete mathematics and statistical physics. It is shown experimentally (and partly supported
theoretically) that for many NP-complete problems, as a parameter is varied, there is a sharp transition from 1 to
0 at a threshold point with respect to the probability of a random instance being soluble. More interestingly, the
hardest instances to solve are concentrated in the sharp transition region. As well known, finding ways to generate
hard instances for a problem is important both for understanding the complexity of the problem and for providing
challenging benchmarks for experimental evaluation of algorithms [11]. So the finding of phase transition phenomena
in computer science not only gives a new method to generate hard instances but also provides useful insights into the
study of computational complexity from a new perspective.

Although tremendous progress has been made in the study of phase transitions, there is still some lack of research
about the connections between the threshold phenomena and the generation of hard instances, especially from a
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theoretical point of view. For example, some problems can be used to generate hard instances but the existence of
phase transitions in such problems has not been proved. One such example is the well-studied random 3-SAT. A
theoretical result by Chvétal and Szemerédi [9] shows that for random 3-SAT, no short resolution proofs exists in
general, which means that almost all proofs for this problem require exponential resolution lengths. Experimental
results further indicate that instances from the phase transition region of random 3-SAT tend to be particularly hard to
solve [24]. Since the early 1990s, considerable efforts have been put into random 3-SAT, but until now, the existence
of the phase transition phenomenon in this problem has not been established, although Friedgut [16] made tremendous
progress in proving that the width of the phase transition region narrows as the number of variables increases. On the
other hand, for some problems with proved phase transitions, it was found either theoretically or experimentally that
instances generated by these problems are easy to solve or easy in general. Such examples include random 2-SAT,
Hamiltonian cycle problem and random 2 + p-SAT (0 < p<0.4). For random 2-SAT, Chvétal and Reed [8] and
Goerdt [21] proved that the phase transition phenomenon will occur when the ratio of clauses to variables is 1. But we
know that 2-SAT is in P class which can be solved in polynomial time, implying that random 2-SAT cannot be used
to generate hard instances. For the Hamiltonian cycle problem which is NP-compete, Komldés and Szemerédi [22] not
only proved the existence of the phase transition in this problem but also gave the exact location of the transition point.
However, both theoretical results [7] and experimental results [30] suggest that generally, the instances produced by
this problem are not hard to solve. Different from the above two problems, random 2 + p-SAT [27] was first proposed
as an attempt to interpolate between the polynomial time problem random 2-SAT with p = 0 and the NP-complete
problem random 3-SAT with p = 1. It is not hard to see that random 2 4 p-SAT is in fact NP-complete for p > 0.
The phase transition behavior in this problem with 0 < p <0.4 was established by Achlioptas et al. and the exact
location of the threshold point was also obtained [1]. But it was further shown that random 2 + p-SAT is essentially
similar to random 2-SAT when 0 < p <0.4 with the typical computational cost scaling linearly with the number of
variables [28].

As mentioned before, from a computational theory point of view, what attracts people most in the study of phase
transitions is the finding of many hard instances in the phase transition region. Hence, starting from this point, we can
say that the problem models which cannot be used to generate random hard instances are not so interesting for study
as random 3-SAT. However, until now, for the models with many hard instances, e.g. random 3-SAT, the existence of
phase transitions has not been established, not even the exact location of the threshold points. So, from a theoretical
perspective, we still do not have sufficient evidence to support the long-standing observation that there exists a close
relation between the generation of many hard instances and the threshold phenomena, although this observation opened
the door for, and has greatly advanced the study of phase transitions in the last decade. From the discussion above,
an interesting question naturally arises: whether there exist models with both proved phase transitions and many hard
instances.

Recently, to overcome the trivial asymptotic insolubility of the previous random constraint satisfaction problem
(CSP) models, Xu and Li [32] proposed a new CSP model, i.e. Model RB, which is a revision to the standard Model B.
It was proved that the phase transitions from solubility to insolubility do exist for Model RB as the number of variables
approaches infinity. Moreover, the threshold points at which the phase transitions occur are also known exactly. Based
on previous experiments and by relating the hardness of Model RB to Model B, it has already been shown that Model
RB abounds with hard instances in the phase transition region. In this paper, by encoding CSPs into CNF formulas,
we will prove that almost all instances of Model RB have no tree-like resolution proofs of less than exponential size.
Thus, we give a positive answer to the question above.

The rest of this paper is organized as follows. Section 2 will introduce some basic definitions. In Section 3, we will
first give an overview of Model RB and then propose a random CSP model, called Model RD, along the same line as
for Model RB. Section 4 will give the resolution complexity result for Model RB and Model RD while the proof of
this result will be detailed in Section 5. Finally, we conclude in Section 6 by discussing the phase transition behavior
in NP-complete problems.

2. Preliminaries

A CNF formula F is a conjunction (A) of clauses, where each clause is a disjunction (V) of literals and a literal is
a propositional variable or its negation (—). A CNF formula is satisfiable if there is an assignment of truth values to



K. Xu, W. Li / Theoretical Computer Science 355 (2006) 291302 293

the variables which makes the formula true; otherwise it is unsatisfiable. The problem of determining whether a CNF
formula is satisfiable is known as the propositional satisfiability problem (SAT).

Resolution is a simple and complete proof system for proving unsatisfiability of CNF formulas, which is based
on the following rule: if (A Vv x) and (B Vv —x) are two clauses, then we can derive the clause (A Vv B), called the
resolvent. A resolution derivation of a clause C from a CNF formula F is a sequence of clauses 7 = Cy, Ca, ..., Cy,
where C,;, = C and every C; is either a clause of F or the resolvent of two clauses C; and Cy with j, k < i.
The size of 7 is the number of clauses in it. A derivation of the empty clause, denoted by [, from F is called a
refutation or proof of F. A derivation n is called tree-like if each non-empty derived clause is used exactly once
in 7.

A CSP s a generalization of SAT, which consists of a finite set U = {uy, ..., u,} of n variables and a set of constraints
defining the values that the variables can simultaneously take. More specifically, each variable u; is associated with
a domain D(u;) which specifies the possible values of that variable. A constraint C;1 ;2,.. ik consists of a subset
{uj1, ui2, ..., u;x} of U and a relation R;q;2,. ik S D(ui1) x -+ x D(u;x), where i1,i2, ..., ik are distinct and
Ri1.i2.....ik specifies the compatible tuples of values for the variables u;1, ..., u;x. The incompatible tuples are called
nogoods. The number of variables bounded by a constraint is called its arity. A constraint is called binary if its arity
k = 2 and non-binary if k > 3. A CSP is called binary if the constraints of this CSP are binary. A solution to a CSP is an
assignment of a value to each variable from its domain such that every constraint is satisfied. A constraint C;y ;2. ik is
satisfied if the tuple of values assigned to the variables u;1, ..., u;x is compatible. A CSP that has a solution is called
satisfiable; otherwise it is unsatisfiable.

There are two natural ways to discuss the resolution complexity of a CSP. One way is to directly encode a CSP
instance into a CNF formula and define the resolution complexity of the CSP instance to be the resolution complexity
of the corresponding CNF formula. As indicated in [23], this approach is stronger in simulating popular CSP algorithms
than the other one and so we adopt it in this paper. Given a CSP instance P, we directly encode it into a CNF formula,
denoted by ¢(P), as follows. For each value j of each CSP variable u;, we introduce a propositional variable x;;,
called a domain variable of u;. If x;; = T, then it means that the value j is assigned to the variable u;. There are
three sets of clauses needed in the encoding. The domain clause ensures that each variable must be assigned a value
from its domain. For example, if u; is a CSP variable whose domain has d elements, then there is a domain clause:
Xi1 V xi2 V - - - V xjq. The at-most-one clause asserts that each variable is assigned at most one value from its domain.
For example, if ji, j» € D(u;) and j; # j2, then there is an at-most-one clause: —x;j, V —x;j,. Finally, the conflict
clause excludes any nogoods of each constraint. For example, if 1 = 2 and u; = 1 is a nogood, then there is a conflict
clause: —xj2 vV —x2.

3. Model RB and Model RD

The CSP is a fundamental problem in Artificial Intelligence, with a distinguished history and many applications,
such as in knowledge representation, scheduling and pattern recognition. To compare the efficiency of different CSP
algorithms, some standard random CSP models have been widely used experimentally to generate benchmark instances
in the past decade. Among these models, the most commonly used one is Model B which is defined by four parameters
(n,d, p1, p2), where n is the number of variables, d is the uniform domain size, p; (called constraint density) is
the proportion of constraints selected at random from a set of n(n — 1)/2 possible binary constraints and p» (called
constraint tightness) is the proportion of nogoods in each constraint selected at random from a set of d> possible
nogoods. For Model B, Achlioptas et al. [2] proved that except for a small range of values of the constraint tightness,
almost all instances generated are unsatisfiable as the number of variables approaches infinity. This result, as shown
in [20], implies that most previous experimental results about random CSPs are asymptotically uninteresting. However,
it should be noted that Achlioptas et al.’s result holds under the condition of fixed domain size and so is applicable
only when the number of variables is overwhelmingly larger than the domain size. But in fact, it can be observed
that the domain size, compared to the number of variables, is not very small in most experimental CSP studies. This,
in turn, explains why there is a big gap between Achlioptas et al.’s theoretical result and the experimental findings
about the phase transition behavior in random CSPs. Motivated by the observation above, and to overcome the trivial
asymptotic insolubility of the previous random CSP models, Xu and Li [32] proposed an alternative CSP model
as follows.
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3.1. Model RB

Given a set U of n variables, first, we select with repetition m = rn In n random constraints. Each random constraint
is formed by selecting without repetition k of n variables, where k > 2 is an integer. Next, for each constraint we select
uniformly at random without repetition ¢ = p-d* nogoods, i.e., each constraint contains exactly (1— p)-d¥ compatible
tuples of values, where d = n* is the domain size of each variable and o > 0 is a constant.

Note that the way of generating random instances for Model RB is almost the same as that for Model B. However,
like the N-queens problem and Latin square, the domain size of Model RB is not fixed but polynomial in the number of
variables. It is proved that Model RB not only avoids the trivial asymptotic behavior but also has exact phase transitions.
More precisely, the following theorems hold for Model RB, where Pr(Saf) denotes the probability that a random CSP
instance generated by Model RB is satisfiable.

Theorem 1 (Xu and Li [32]). Let rq = —o/In(1 — p). If o > 1/k, 0 < p < 1 are two constants and k, p satisfy the
inequality k>1/(1 — p), then

lim Pr(Sat) =1 for any constantr < re,
n— oo

lim Pr(Sat) =0 for any constantr > re;.
n—0o0

Theorem 2 (Xu and Li [32]). Let pes = 1 —e " Ifa > 1/k, r > 0 are two constants and k, o« and r satisfy the
inequality ke=*/" > 1, then

lim Pr(Sat) =1 for any constant p < pcr,
n—oo

lim Pr(Sat) =0 for any constant p > pe;.
n— o0

As shown in [32], many instances generated following Model B in previous experiments can also be viewed as
instances of Model RB, and more importantly, the experimental results for these instances agree well with the theoretical
predictions for Model RB. Therefore, in this sense, we can say that Model B can still be used experimentally to generate
benchmark instances with non-trivial threshold behaviors. However, to achieve this, a natural and convenient way is
to vary the values of CSP parameters under the framework of Model RB. For more discussions on the experimental
aspects of Model RB, please see [31]. Note that another standard CSP Model, i.e. Model D, is almost the same as Model
B except that for every constraint, each tuple of values is selected to be incompatible with probability p. Similarly, we
can make a revision to Model D and then get a new Model as follows.

3.2. Model RD

Given a set U of n variables, first, we select with repetition m = rn In n random constraints. Each random constraint
is formed by selecting without repetition k of n variables, where k >2 is an integer. Next, for each constraint, from d*
possible tuples of values, each tuple is selected to be incompatible with probability p, where d = n* is the domain size
of each variable and o > 0 is a constant.

Along the same line as in the proof for Model RB [32], we can easily prove that exact phase transitions also exist
for Mode RD. More precisely, Theorems 1 and 2 hold for Model RD too. In fact, it is exactly because the differences
between Model RB and Model RD are very small that many properties hold for both of them and the proof techniques
are also almost the same. So in this paper, we will discuss both models, denoted by Model RB/RD.

Recently, there has been a growing theoretical interest in random CSPs, especially with respect to their phase
transition behaviors [10,12-15,17,29,33] and resolution complexity [17,19,23,26]. In what follows, we will discuss the
resolution complexity of Model RB/RD.

4. Main results

In this paper, we prove the following result.
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Theorem 3. Let P be a random CSP instance generated following Model RB/RD. Then, whp ! P has no tree-like
resolutions of length less than 290 and no general resolutions of length less than 28 /d)

It should be noted that unlike Theorems 1 and 2, there is no restriction on the values of CSP parameters to make
the above theorem hold. As far as we know, this theorem is also the first resolution complexity result for a general
(non-binary) CSP model with growing domains. A similar resolution result was proved in [17] for a binary CSP model
where the domain size d > (In n) !¢ for any constant ¢ > 0. This also leaves an open question whether the lower bound
for general resolutions of CSPs with growing domains can be improved to be as large as that for tree-like resolutions,
which seems to be worth further investigation in future studies. Combining Theorems 1, 2 and 3, Model RB/RD provides
a general framework for generating asymptotically hard CSPs with non-trivial threshold behaviors, which especially
can help to satisfy an increasing interest in the study of non-binary CSPs.

5. Proof of Theorem 3

The core of the proof for Theorem 3 is to show that whp there exists a clause with large width in every refutation.
The width of a clause C, denoted by w(C), is the number of variables appearing in it. The width of a set of clauses is
the maximal width of a clause in the set. The width of deriving a clause C from the formula F, denoted by w(F F C) is
defined as the minimum of the widths of all derivations of C from F'. So, the width of refutations for F' can be denoted by
w(F F0). Ben-Sasson and Wigderson [6] gave the following theorem on size—width relations and proposed a general
strategy for proving width lower bounds for CNF formulas.

Theorem 4 (Ben-Sasson and Wigderson [6]). Let F be a CNF formula with n variables and S(F) (St (F)) be the
minimal size of a (tree-like) refutation. Then we have

— 2
Sy (F) =20 FFO-0F) - g(p) — exp <Q<(w(Fk0) w(F)) ))

n

By extending Ben-Sasson and Wigderson’s strategy, Mitchell [23] proved exponential resolution lower bounds for
some random CSPs of fixed domain size. In what follows, to obtain lower bounds on width for RB/RD, we will
basically use the same strategy as in [23], but extend it to handle random CSPs with growing domains. First, we prove
the following local sparse property for RB/RD.

Lemma 1. Let P be a random CSP instance of Model RB/RD. There is constant ¢ > 0 such that whp every sub-problem
of P with size s <cn has at most b = fs Inn constraints, where f = o/6k1In1/(1 — p).

Proof. A sub-problem is defined by a subset of variables with all the constraints where only the variables in the subset
occur. We consider the number of sub-problems on s variables with b = fis Inn constraints for 0 < s <cn. There are

(’s ) possible choices for the variables and (’Z ) for the constraints. Given such choices, the probability that all the b
constraints are in the s variables is not greater than (s/n)*”. So, the number of such sub-problems is at most

SIRIGEN O
- (Fm) G

eltBnn, Blnn o (k—1)BInn—1 *
- ﬁ[)’lnn (;) '

I When we say that a property holds whp (with high probability) it means that this property holds with probability tending to 1 as the number of
variables approaches infinity.
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For sufficiently large n, there exists a constant ¢y > 0 such that

el+[31nnr[§lnn

< n“l.

ﬁ[f Inn

Thus we get

OE <[

Letc < % exp(—(2 + ¢1)/((k — 1)3)) be a positive constant. For 0 < s <cn, it follows from the above inequality that

(GG () <

Thus the expected number of such sub-problems with s <cn is at most

£ () < o=

s=1

This finishes the proof. [J

The basic idea behind the proofs in this paper and [23] is to show that whp small sub-problems of a CSP do not
have too many constraints (i.e. the constraint graph of the CSP is locally sparse) and are satisfiable. From the above
lemma and the corresponding one in [23], we can see that the constraint graph discussed in this paper is much denser
than that in [23] where the domain size is taken to be constant. This is because that in the former case, the number of
constraints is super-linear in the number of variables while in the latter case such a relationship is linear. Mainly due
to this reason, most results in [23] are not directly applicable here. To prove that for instances of Model RB/RD, small
sub-problems are satisfiable whp, we need to introduce the following two definitions.

Definition 1. Consider a variable u and a set of i constraints each containing u. In the set of i constraints, there is an
assignment of values to all the variables except u. We call this an i-constraint assignment tuple, denoted by T; .

Definition 2. Given a variable u and an i-constraint assignment tuple 7; ,. We assign a value v to « from its domain.
So, all the variables in the i constraints of 7; , have been assigned values. If at least one constraint in 7; ,, is violated by
these values, then we say that the value v of u is flawed by T; ,,. If all the values of u in its domain are flawed by T; ,,
then we say that the variable u is flawed by T; ,,, and T; ,, is called a flawed i-constraint assignment tuple.

Lemma 2. Let P be a random CSP instance of Model RB/RD. Then, whp no assignment of values to any subset of
variables can produce a flawed i-constraint assignment tuple T; ,, in P with i <3k Inn.

Proof. Now consider an i-constraint assignment tuple 7; , with i <3kf Inn. It is easy to see that the probability that
T; 4 is flawed increases with the number of constraints i. Recall that in Model RD, for every constraint, each tuple of
values is selected to be incompatible with probability p. So, given a value v of u, the probability that v is flawed by
Tiuis

1—(1—p).
Thus, since each assignment becomes a nogood independently, the probability that all the d = n* values of u are flawed
by T; 4, i.e. the probability of T; , being flawed is

[1——-p
Note that

p

_ o
"~ 6kInl/(1—p)
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Thus for 0 < i <3kfInn, we have

o ‘ 1 \3kBn ”1
Pr(7;,, is flawed)|; < 3xpinn < |1 — (1 — p)

1 n /2
=|1- W <€_n .
n

The above analysis only applies to Model RD. For Model RB, such an analysis is much more complicated, and so
we leave it in the appendix. Recall that there are n variables and m = rnInn constraints. So the number of possible
choices for i-constraint assignment tuples is at most

o (")t

For i <3kfInn, when n is sufficiently large, there exists a constant ¢, > 0 such that

n (m)d(k—l)i — rnlnn pk=Doi rnlnn p3k=Dokfnn
i i ST\ 3kpInn

3kfilnn
<n ernlnn p3k=DakBlnn _ ,exln?n
3kfInn

Thus the expected number of flawed i-constraint assignment tuples with i <3kf Inn is at most

3kBInn _ 3kBInn
my k-1 : » In? .
> n( ; )d( —Di Pr(T;, is flawed) < e2™ " > Pr(7T;, is flawed)
i=1 ! i=1
< ealntn gt 3kflnn
=o(1).

This implies that whp there does not exist a variable # and an i-constraint assignment tuple 7; , with i <3kf1nn such
that u is flawed by 7; ;. This is exactly what we need and so we are done. [J

Lemma 3. Ler P be a random CSP instance of Model RB/RD. Then, whp every sub-problem of P with at most cn
variables is satisfiable.

Proof. Here we define the size of a problem as the number of variables in this problem. We will prove this lemma
by contradiction. Assume that we have an unsatisfiable sub-problem of size at most cn. Thus we can get a minimum
sized unsatisfiable sub-problem with size s <cn, denoted by P;. From Lemma 1 we know that P; has at most fis Inn
constraints whp. Thus there exists a variable u in P; with degree at most kff Inn, i.e. the number of constraints in
P, associated with u is not greater than kf In n. Removing u and the constraints associated with u from Pj, we get a
sub-problem P,. By minimality of P;, we know that P» is satisfiable, and so there exists an assignment satisfying P,.
Suppose that the variables in P, have been assigned values by such an assignment. Now consider the variable u and
the i constraints associated with u, where i <kf Inn. By Definition 2 this constitutes an i-constraint assignment tuple
for u, denoted by 7; ,. Recall that P; is unsatisfiable. This means that no value of u can satisfy all the i constraints.
That is to say, the variable u is flawed by 7; ;. Therefore, if a sub-problem of size at most cn is unsatisfiable, then, whp
there is a variable u and an i-constraint assignment tuple 7; ,, such that « is flawed by T; ,,, where i <kfInn. This is in
contradiction with Lemma 2 and so finishes the proof. [

Now we will prove that there whp exists a complex clause in the refutation proofs of Model RB/RD. The complexity
of a clause was defined in [23] by Mitchell as follows. For a CSP instance P and a clause C over the literals in ¢(P),
the complexity of C with respect P, denoted by u(C), is the size of the smallest sub-problem II such that C can be
derived by resolution from ¢(IT). Along the same line as in the proof of [23], we have the following lemma.

Lemma 4. Let P be a random CSP instance of Model RB/RD. Then, whp every refutation © of ¢(P) has a clause C
of complexity cn /2 < u(C) <cn.
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Proof. The proof for the corresponding lemma in [23] can be directly applied here. For the convenience of readers,
we give the sketch of the proof as follows. Construct a graph G, for & where the nodes are the clauses in 7 and the
parent of two clauses is their resolvent. The root of G is the empty clause [J and the leaves are the input clauses. By
Lemma 3, whp any sub-problem with size at most cn is satisfiable, and thus u(.J) > cn. We claim that there must be
a clause B in G with complexity no less than cn and its children (denoted by C; and C3) have complexity no greater
than cn. This is because that in the path from the root to every node the complexity of clauses is non-increasing and
the complexity of each input clause is 1. It follows that p(C1), u(C2) <cn and u(Cp) + p(Cz) = u(B) = cn. So, one of
C; and C, must be the clause satisfying the condition in Lemma 4. [

Lemma 5. Given a random CSP instance P of Model RB/RD, let C be a clause of complexity cn/2 < u(C) < cn with
respect to P. Then, whp C has at least (c/6)n literals, i.e. w(C) > (c/6)n.

Proof. We will prove this by contradiction. Let P; be the smallest sub-problem such that ¢(P;) F C. Hence, the size
of Py is at least (¢/2)n and at most cn. By Lemma 1, there are at most ficn Inn constraints in Pj. So, there are at most
(c/3)n variables with degree greater than 3kffInn. Then, there are at least (¢/2)n — (¢/3)n = (c/6)n variables in
Py with degree at most 3kf Inn. We will prove that for these variables, whp there does not exist a variable such that
no domain variable of it appears in C. Now assume that we have a variable u in P; with degree i <3kfInn and no
domain variable of it appears in C. Removing u and the constraints associated with it from P;, we get a sub-problem
P>. By minimality of P;, we know that ¢(P2) £ C. So we can find an assignment satisfying P, but not satisfying C.
Suppose that the propositional variables in P> and C have been assigned values by such an assignment. Now consider
the variable u and the constraints associated with it. By Definition 2, this constitutes an i-constraint assignment tuple
for u, denoted by 7; ,. By assumption, no domain variable of u appears in C. So, assigning any value to u will not
affect the truth value of C. Recall that ¢(P;) F C and C is false under the current assignment. Therefore, no value of
u can satisfy ¢(Py), i.e. setting any value to u will violate at least one constraint associated with it. It follows that u is
flawed by T; 4, i.e. there exists a flawed i-constraint assignment tuple with i <3kff Inn. This is in contradiction with
Lemma 2 and so we are done. [

Combining Lemmas 4 and 5, we have that, for arandom CSP instance P of Model RB/RD, whp w(¢(P) F0) > (¢/6)n.
Now, by applying Theorem 4 and noting that the number of propositional variables is nd, we finish the proof. One
point worth mentioning is that when d = n* >n, the initial width of domain clauses is not less than the number of
variables. In such a case, to make Theorem 4 applicable, we need to make the following extensions. For each domain

clause x1 V x V .-+ V x,z, we introduce extension variables yi, y2, ..., y,»—09 and replace the original domain
clause with new clauses: y1 V y2 V -+ V y,0-00, =¥ V X1 VX2 V =+ V X099, Y2 V X099 1 V X099 5 V « -+ V
X009, vy TYVpa=099 V Xpa 09941 V Xy 09945 V-V oxpx, If 0 >1.99, then we need to make a similar extension to

the clause y; Vy2 V- - -V y,.-099 which (if necessary) will be repeated finite times such that every new clause will finally
have at most o(n) literals. It is easy to see that such extensions have no effect on the main results in this paper. More
precisely, whp the minimum size of tree-like resolutions with new clauses is still exponential and the total number of
propositional variables (including extension variables) is still O(nd). On the other hand, it is straightforward to see that
every domain clause can be derived by resolutions from its associated new clauses in polynomial steps. Based on the
above two points, it follows that the minimum size of resolutions with original domain clauses is (up to a polynomial
size) greater than or equal to that with new clauses, which directly implies the result we desire.

6. Conclusions

In this paper, by encoding CSPs into CNF formulas, we proved exponential lower bounds for tree-like resolution
proofs of two general random CSP models with exact phase transitions, i.e. Model RB/RD. This result suggests that we
not only introduce new families of hard instances for CSP and SAT, which is of importance for experimentally evaluating
CSP and SAT algorithms, but also propose models with both many hard instances and exact phase transitions.

As mentioned before, there are some other NP-complete problems with proved exact phase transitions, e.g. Hamil-
tonian cycle problem and random 2 4+ p-SAT (0 < p<0.4). However, it has been shown either experimentally or
theoretically that the instances produced by these problems are generally easy to solve. So one would naturally ask
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what the main difference between these “easy” NP-complete problems and RB/RD is. It seems that for these “easy”
NP-complete problems with exact phase transitions, they usually have some kind of local property which can be used to
design polynomial time algorithms working with high probability, and the exact phase transitions are, in fact, obtained
by probabilistic analysis of such algorithms. So, it appears that if a problem has exact phase transitions obtained algo-
rithmically, then it also means that the problem is not hard to solve. For RB/RD, the situation is, however, completely
different. More specifically, the exact phase transitions of RB/RD are not obtained algorithmically, but by use of the
first and the second moment methods which say nothing about the local property of the problem and are, therefore,
unlikely to be useful for designing more efficient algorithms. Thus, it seems that RB/RD, unlike the “easy”” NP-complete
problems, can indeed provide a reliable source to generate hard instances. When talking about the hardness of solving
combinatorial problems, we should mention that using concepts from statistical physics, people [3,28] in the past few
years have made remarkable progress in providing deep insights into it, which lies at the frontier between statistical
physics and computer science.

Recently, Frieze and Wormald [18] studied random k-SAT for moderately growing k, i.e. k = k(n) satisfies
k —logo,n — oo where n is the number of variables. For this model, they established similarly, by use of the
first and the second moment methods, that there exists a satisfiability threshold at which the number of clauses is
m = 2¥n1n2. From Beame et al.’s earlier work on the complexity of unsatisfiability proofs for random k-SAT for-
mulas [4,5], we know that the size of resolution refutations for this model is exponential with high probability. So,
the variant of random k-SAT studied by Frieze and Wormald is also a model with both exact phase transitions and
many hard instances. Note that in all of these studies, either the domain size or the constraint size grows with the
number of variables. More recently, a similar result was shown for a CSP model with constant sized domains and
constraints [10].

To gain a better understanding of Model RB/RD, we now make a comparison of them with the well-studied random
3-SAT of similar proof complexity. First, we think that the exact phase transitions should be one advantage of RB/RD,
which can help us to locate the hardest instances more precisely and conveniently when implementing large-scale
computational experiments. As for the theoretical aspect, it seems that RB/RD, intrinsically, are much mathematically
easier to analyze than random 3-SAT, such as in the derivation of thresholds. From a personal perspective, we think that
such mathematical tractability should be another advantage of RB/RD, making it possible to obtain some interesting
results which do not hold or cannot be easily obtained for random 3-SAT.

In summary, the Hamiltonian cycle problem, random 3-SAT and Model RB/RD, respectively, exhibit three different
kinds of phase transition behavior in NP-complete problems. More specifically: (1) The Hamiltonian cycle problem
has a known threshold but its instances are generally easy to solve; (2) Random 3-SAT can generate hard instances
but its threshold seems intrinsically hard to derive; (3) Model RB/RD have both known thresholds and hard instances.
Compared with the former two that have been extensively explored in the past decade, the third one, due to various
reasons, has not received much attention so far. It is hoped that more investigations, either experimental or theoretical,
will be carried out on this behavior, and we also believe that such studies will lead to fresh insights and new discoveries
in this active area of research (i.e. on phase transitions and computational complexity).
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Appendix

Now we consider the proof of Lemma 2 for Model RB. Given a variable u an i-constraint assignment tuple 7; ;. It
is easy to see that the probability that « is flawed by T; , increases with the number of constraints i. Thus we have

Pr(T7; , is flawed)|; <3kPlnn S Pr(T; , is ﬂawed)|i=3kﬂlnn.

For the variable u, there are d = n* values in its domain, denoted by vy, v2, ..., v4. Let Pr(A ;) denote the probability
that v; is not flawed by 7; ,,. Thus the probability that at least one value is not flawed by 7; ,, i.e. the probability that



300 K. Xu, W. Li / Theoretical Computer Science 355 (2006) 291 —302

the variable u is not flawed by 7; , is

Pr(AjUA,U---UAg) = Y Pr(A,) — 3 Pr(A,Ag) + -+ (=)' Pr(A1 Ay - - Ag).
I<p<d 1< p.,q<d,p#q

Then
Pr(7T;,, is flawed) =1 —Pr(Af U A, U--- U Ay)
d . /d
=14 > (-1’ (J) Pr(AjAy---Aj).
j=1

Recall that in Model RB, for each constraint, we uniformly select without repetition pd* incompatible tuples of values
and each constraint is generated independently. So we have

d*—j\ 7"
( pd* )
dk
(Pd">
_[@ = pd*y@* — pd* —1)--- @ — pd* - j+ D7
dkd* —1)---(dk - j+1) '
Note that j <d = n* and k >2. Now consider the case of i = 3kfInn, where § =

Pr(AjAs - Aj) =

o . .
r—_— By asymptotic analysis,

we have

Pr(A1Az -+ Aj)|i=3kpinn

i1 3kflnn
1 2 j—1
l—nﬁ l—m 1— Jnm
_ )i 4 73kBInn
=11 - p)3kﬁln"]1 |:1 _ Lu +()< ]2k >i|
n2ka

1—p 2nke

. . . 3kp1
_ i1 PG =Di g J* "
1 — p ko n2ka

. . . 3kfInn
. p (—Dj j*
H(j) = [1 T +o(—n2ka .

Then we get

Let

o

. n (n
Pr(T; , is flawed)|;—stpimn = 1 + - (=1)’ ( j )Pr(AlAz o Apli=3kpinn
j=1

R YAy, (”) ™I H(j).
= J

j=l1
For 0<j <n®% we can easily show that H(j) = 1 4+ o(1). Therefore,
Pr(T; ,, is flawed)|;—3xg1nn
n* . (n% . n* . (n®* .
~ 14 ) (=1 ( . ) O TR SR C W ( . ) (I (H(j) - 1)
j=1 J j=n@/5m J
1 n% n* j noc _“/2 j .
= 1_W + 2 (=D ) TEIHG) - 1)
n j=n@/92 J

<o e (7)o -

j=n@/5)
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It is easy to verify that
o o\ J
<” ) (%)) < (ﬂ) (n=312)] — =i+ n,
J J
Let B(j) = j — jInj + %jInn. Differentiating B(j) with respect to j, we obtain
J J—JmjT35J g blJ P J
(4/5)0

B'(j) = glnn —1Inj <Owhen j>n

So for n@/3* < j <n*, we have

I’l“ 70(/2] B(n(4/5)1) e
( j>(” ) se = (o)

Note that H(j) = O(n°?) for n*/3* < j <n”*, where ¢, > 0 is a constant. Hence,

e "
_p@/5)
=o(e ")

n* . /n* . n” n% .
> (—1>f< .)(n—“/%f(ﬂ(j)—l) < X <.)(n—”~/2)f|H(j)—1|
j=n@/5 J j=n@/52 \J
= 0O )o(e ™) = o(e™"?).
Thus we get

. . _ /2
Pr(T;,, is flawed)|; <3kfInn < Pr(7;, is ﬂawed)|i=3kﬂlnn ~e .

The remaining part of the proof is identical to that of Lemma 2 for Model RD, and so we are done.
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